首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14670篇
  免费   1921篇
  国内免费   632篇
电工技术   899篇
综合类   1197篇
化学工业   2327篇
金属工艺   1764篇
机械仪表   1712篇
建筑科学   649篇
矿业工程   391篇
能源动力   306篇
轻工业   1822篇
水利工程   176篇
石油天然气   458篇
武器工业   525篇
无线电   1211篇
一般工业技术   2254篇
冶金工业   469篇
原子能技术   136篇
自动化技术   927篇
  2024年   40篇
  2023年   256篇
  2022年   408篇
  2021年   484篇
  2020年   475篇
  2019年   415篇
  2018年   449篇
  2017年   588篇
  2016年   637篇
  2015年   634篇
  2014年   870篇
  2013年   916篇
  2012年   1214篇
  2011年   1276篇
  2010年   887篇
  2009年   768篇
  2008年   792篇
  2007年   1040篇
  2006年   972篇
  2005年   713篇
  2004年   583篇
  2003年   544篇
  2002年   404篇
  2001年   342篇
  2000年   269篇
  1999年   214篇
  1998年   179篇
  1997年   144篇
  1996年   144篇
  1995年   117篇
  1994年   94篇
  1993年   73篇
  1992年   54篇
  1991年   36篇
  1990年   49篇
  1989年   34篇
  1988年   16篇
  1987年   12篇
  1986年   6篇
  1985年   7篇
  1984年   7篇
  1983年   3篇
  1982年   10篇
  1981年   5篇
  1980年   12篇
  1964年   4篇
  1963年   3篇
  1956年   3篇
  1954年   2篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
1.
Thin multilayer coatings of ZrO2–Y2O3–Al2O3 were prepared using the sol-gel method and dip-coating technique in order to advance in the study of what influence the incorporation of Al2O3 has on films of Y2O3-doped ZrO2, investigating its role in the synthesis of the solutions and in the characteristics and properties of the coatings. After the characterization of the solutions used in the process, the microstructure of the films was studied and their mechanical behaviour and resistance to thermal shock were determined so as to optimize the characteristics and functionality of these coatings. With increased alumina content, 3YSZ-Al2O3 (20 mol%), the cubic phase of the zirconia disappeared completely at the sintering temperature used (700 °C), resulting in the tetragonal phase with Al in solution. There was also a decrease in the coatings' hardness and Young's modulus, and an increase in toughness and resistance to thermal shock. These results allow guidelines to be established for the design of multilayer structures that are, tougher, more resistant, and have improved surface properties.  相似文献   
2.
This paper investigates the influence of suspension characteristics on microstructure and performance of suspensions plasma sprayed (SPS) thermal barrier coatings (TBCs). Five suspensions were produced using various suspension characteristics, namely, type of solvent and solid load content, and the resultant suspensions were utilized to deposit five different TBCs under identical processing conditions. The produced TBCs were evaluated for their performance i.e. thermal conductivity, thermal cyclic fatigue (TCF) and thermal shock (TS) lifetime. This experimental study revealed that the differences in the microstructure of SPS TBCs produced using varied suspensions resulted in a wide-ranging overall TBC performance. All TBCs exhibited thermal conductivity lower than 1 W/(m. K) except water-ethanol mixed suspension produced TBC. The TS lifetime was also affected to a large extent where 10 wt % solid loaded ethanol and 25 wt % solid loaded water suspensions produced TBCs exhibited the highest and the lowest lifetime, respectively. On the contrary, TCF lifetime was not as significantly affected as thermal conductivity and TS lifetime, and all ethanol suspensions showed marginally better TCF lifetime than water and ethanol-water mixed suspensions deposited TBCs.  相似文献   
3.
为了克服超声造影剂中微米级气泡尺寸较大的局限性,大量研究人员对超声应用的替代造影剂(纳米级造影剂)进行了研究。随着生物纳米技术的飞速发展,纳米级超声造影剂在诊断与治疗领域有着广阔的发展前景。与超声造影剂中的微米级气泡相比,纳米级造影剂粒径较小,渗透能力极强,可以通过血管内皮间隙,进而可以实现血管外病变部位的显影。文中详细论述了超声造影剂在超声作用下的行为以及2种主要的纳米级造影剂:纳米气泡和纳米液滴造影剂,对其理论研究进展进行了总结,并提出了目前仍存在的一些问题及其未来的研究方向。  相似文献   
4.
Optimal tip sonication settings, namely tip position, input power, and pulse durations, are necessary for temperature sensitive procedures like preparation of viable cell extract. In this paper, the optimum tip immersion depth (20–30% height below the liquid surface) is estimated which ensures maximum mixing thereby enhancing thermal dissipation of local cavitation hotspots. A finite element (FE) heat transfer model is presented, validated experimentally with (R2 > 97%) and used to observe the effect of temperature rise on cell extract performance of Escherichia coli BL21 DE3 star strain and estimate the temperature threshold. Relative yields in the top 10% are observed for solution temperatures maintained below 32°C; this reduces below 50% relative yield at temperatures above 47°C. A generalized workflow for direct simulation using the CONSOL code as well as master plots for estimation of sonication parameters (power input and pulse settings) is also presented.  相似文献   
5.
《Ceramics International》2021,47(22):31457-31469
The present work investigated the effects of thermal cycles in air on the tensile properties of a two-dimensional carbon fibre reinforced silicon carbide composite (2D C/SiC) prepared by chemical vapour infiltration at different heating rates. The composite was exposed to different cycles of thermal shock between 20 °C and 1300 °C in air. The damage mechanisms were investigated by AE online monitoring and fractured morphology offline analysis. The tensile strength of 2D-C/SiC decreases with increasing thermal cycles. However, the modulus only decrease within 40 cycles. Due to oxidation, with the decrease in heating rate, the residual properties of the material decrease more obviously. Meanwhile, the results of AE online monitoring and fracture analysis show that the matrix damage is more serious at higher heating rate and that more delamination occours in tensile fractures. The above results indicate that for the thermal shock of 2D C/SiC composites in air, oxidative damage plays a key role in the residual properties.  相似文献   
6.
《Ceramics International》2022,48(8):10601-10612
Using MgC2O4, Mg powders as raw materials and Ni(NO3)2?6H2O as a catalyst, CNTs/MgO composite powders were prepared by a catalytic combustion synthesis method. The CNTs/MgO composite powders were characterized by XRD, Raman spectroscopy, FESEM/EDS and HRTEM. The effects of catalyst content on the degree of graphitization and aspect ratio of the CNTs in composite powders were investigated. Moreover, the thermal shock resistance of low-carbon Al2O3–C refractories after adding the composite powder was investigated. The results indicated that the CNTs prepared with 1 wt% Ni(NO3)2?6H2O addition had a higher degree of graphitization and aspect ratio. In particular, the aspect ratio could reach approximately 200. The growth mechanism of hollow bamboo-like CNTs in the composite powders was proven to be a V-L-S mechanism. The thermal shock resistance of Al2O3–C samples could be improved significantly after adding CNTs/MgO composite powders. In particular, compared with CM0, the residual strength ratio of Al2O3–C samples with added 2.5 wt% composite powders could be increased 63.9%.  相似文献   
7.
Porous alumina with a highly textured microstructure was fabricated by pulse electric current sintering (PECS) using alumina platelets. Highly oriented porous alumina with a porosity of 3%–50% was obtained by a pressure-controlled method of PECS. The properties of the highly textured porous alumina were measured in two directions. The nitrogen gas permeance and thermal conductivity at room temperature were higher in the direction along the platelet length due to the higher continuity of pores and the connectivity of alumina platelets, respectively. The anisotropy of the thermal conductivity at room temperature was investigated and explained by the effect of grain size of platelets as well as morphology and orientation of pores. The bending strength was higher with the loading direction along the platelet thickness. The thermal shock strength was clearly different in the two directions. The difference in the thermal shock strength was investigated by the measurement of properties and thermal stress analysis.  相似文献   
8.
《Ceramics International》2022,48(11):15227-15235
High-performance and low-carbon MgO–C refractories are important refractories for smelting ultra-low carbon steel and clean steel. Based on this, Cr3C2/C composite powders were synthesized by the molten-salt method, and used as an additive to prepare low-carbon MgO–C refractories under nitrogen atmosphere. The phase, morphology and oxidation kinetics of Cr3C2/C composite powders were studied. In addition, the effect of Cr3C2/C composite powders on the morphology, mechanical properties, thermal shock resistance, and corrosion resistance of MgO–C refractories was investigated. The results indicated that the Cr3C2/C composite powders exhibited superior oxidation resistance than flake graphite. Moreover, the Cr3C2/C composite powders were introduced into the MgO–C refractories. Compared with the sample without Cr3C2/C composite powders, the introduction of 1 wt% Cr3C2/C composite powders significantly improved the thermomechanical properties and corrosion resistance of the material, its CMOR, CCS before and CCS after thermal shock were 9.06 MPa, 50.40 MPa and 32.60 MPa, respectively, and the corrosion index was significantly reduced from 44.6% to 26.5%.  相似文献   
9.
The effects of La2O3–Al2O3–SiO2 addition on the thermal conductivity, coefficient of thermal expansion (CTE), Young's modulus and cyclic thermal shock resistance of hot-pressed h-BN composite ceramics were investigated. The samples were heated to 1000 °C and then quenched to room temperature with 1–50 cycles, and the residual flexural strength was used to evaluate cyclic thermal shock resistance. h-BN composite ceramics containing 10 vol% La2O3–Al2O3 and 20 vol% SiO2 addition exhibited the highest flexural strength, thermal conductivity and relatively low CTE, which were beneficial to the excellent thermal shock resistance. In addition, the viscous amorphous phase of ternary La2O3–Al2O3–SiO2 system could accommodate and relax thermal stress contributing to the high thermal shock resistance. Therefore, the residual flexural strength still maintained the value of 234.3 MPa (86.9% of initial strength) after 50 cycles of thermal shock.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号