首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36125篇
  免费   3840篇
  国内免费   1732篇
电工技术   4350篇
技术理论   1篇
综合类   2771篇
化学工业   5519篇
金属工艺   5734篇
机械仪表   2217篇
建筑科学   819篇
矿业工程   3043篇
能源动力   661篇
轻工业   1511篇
水利工程   182篇
石油天然气   1040篇
武器工业   307篇
无线电   1937篇
一般工业技术   5070篇
冶金工业   4800篇
原子能技术   501篇
自动化技术   1234篇
  2024年   63篇
  2023年   562篇
  2022年   898篇
  2021年   1218篇
  2020年   1131篇
  2019年   1002篇
  2018年   989篇
  2017年   1269篇
  2016年   1487篇
  2015年   1463篇
  2014年   2024篇
  2013年   2224篇
  2012年   2473篇
  2011年   2679篇
  2010年   1886篇
  2009年   1914篇
  2008年   1669篇
  2007年   2284篇
  2006年   2155篇
  2005年   1859篇
  2004年   1561篇
  2003年   1420篇
  2002年   1192篇
  2001年   990篇
  2000年   868篇
  1999年   687篇
  1998年   593篇
  1997年   555篇
  1996年   478篇
  1995年   414篇
  1994年   368篇
  1993年   257篇
  1992年   227篇
  1991年   148篇
  1990年   138篇
  1989年   139篇
  1988年   91篇
  1987年   53篇
  1986年   41篇
  1985年   42篇
  1984年   49篇
  1983年   29篇
  1982年   51篇
  1981年   16篇
  1980年   9篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1974年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Classical Fourier's theory is well-known in continuum physics and thermal sciences. However, the primary drawback of this law is that it contradicts the principle of causality. To explore the thermal relaxation time characteristic, Cattaneo–Christov's theory is adopted thermally. In this regard, the features of magnetohydrodynamic (MHD) mixed convective flows of Casson fluids over an impermeable irregular sheet are revealed numerically. In addition, the resulting system of partial differential equations is altered via practical transformations into nonlinear ordinary differential equations. An advanced numerical algorithm is developed in this respect to get higher approximations for temperature and velocity fields, as well as their corresponding wall gradients. For validating our numerical code, the current outcomes are compared with the available literature results. Moreover, it is revealed that the velocity field is more prominent in the suction flow situation as compared with the injection flow case. It is also found that the Casson fluid is hastened in the case of lower yield stress. Larger values of thermal relaxation parameters create a lessening trend in the temperature distribution and its related boundary layer breadth.  相似文献   
2.
Lithium iron phosphate battery (LIPB) is the key equipment of battery energy storage system (BESS), which plays a major role in promoting the economic and stable operation of microgrid. Based on the advancement of LIPB technology and efficient consumption of renewable energy, two power supply planning strategies and the china certified emission reduction (CCER) model are proposed respectively. Based on it, the multi-objective planning optimization model with economic benefits, environmental benefits and power supply stability as the objective function is established for the first time, and the Newton Weighted Sum Frisch method (NWSFA) solution model is adopted. In the planning process, rain flow counting method is used to research the life of BESS, which improves the accuracy of energy storage annual cost calculation. A park in northern China is taken as a case study to demonstrate the application of this model. The simulation results show that the annual economic operating cost of BESS is decreased by 18.81%, the energy supply reliability is increased by 0.15%, and the optimal electricity price adjustment ratio of the system is 15%.  相似文献   
3.
Hydrogen is among a few promising energy carriers of the future mainly due to its zero-emission combustion nature. It also plays an important role in the transition from fossil fuel to renewable. Hydrogen technology is relatively immature and serious knowledge gaps do exist in its production, transport, storage, and utilization. Although the economical generation of hydrogen to the scale required for such transition is still the biggest technical and environmental challenge, unlocking the large-scale but safe storage is similarly important. It is difficult to store hydrogen in solid and liquid states and storing it in the gaseous phase requires a huge volume which is just available in subsurface porous media. Sandstone is the most abundant and favourable medium for such storage as carbonate rock might not be suitable due to potential geochemical reactions.It is well established in the literature that interaction of the host rock-fluid and injected gas plays a crucial role in fluid flow, residual trapping, withdrawal, and more generally storing capacity. Such data for the hydrogen system is extremely rare and are generally limited to contact angle measurements, while being not representative of the reality of rock-brine-hydrogen interaction(s). Therefore, we have conducted, for the first time, a series of core flooding experiments using Nuclear Magnetic Resonance (NMR) to monitor hydrogen (H2) and Nitrogen (N2) gas saturations during the drainage and imbibition stages under pressure and temperature that represent shallow reservoirs. To avoid any geochemical reaction during the test, we selected a clean sandstone core plug of 99.8% quartz (Fontainebleau with a gas porosity of 9.7% and a permeability of 190 mD).Results show significantly low initial and residual H2 saturations in comparison with N2, regardless of whether the injection flow rate or capillary number were the same or not. For instance, when the same injection flow rate was used, H2 saturation during primary drainage was 4% and it was <2% after imbibition. On other hand, N2 saturation during the primary drainage was 26% and it was 17% after imbibition. However, when the same capillary number of H2 was utilised for the N2 experiment, the N2 saturation values were ~15% for initial gas saturation and 8% for residual gas saturation. Our results promisingly support the idea of hydrogen underground storage; however, we should emphasise that more sandstone rocks of different clay mineralogy should be investigated before reaching a conclusive outcome.  相似文献   
4.
This study investigated the effect of 5 freeze–thaw cycles (freezing at −18°C for 12 h and then thawing at 4°C for approximately 12 h) on the meat quality, proximate composition, water distribution and microstructure of bovine rumen smooth muscle (BSM). As the number of freeze–thaw cycles increased, BSM pH, shear force, water content and protein content decreased by 3.06%, 35.50%, 14.49% and 21.11%, respectively, whereas BSM thawing loss, cooking loss, pressing loss, total aerobic count (TAC), ash content and fat content increased by 108.12%, 47.75%, 78.33%, 90.99%, 105% and 35.20%, respectively. The freeze–thaw cycles resulted in greater protein and lipid oxidation, as evidenced by a 36.46% reduction in the sulfhydryl content and a 209.06% and 338.46% increase in the carbonyl and malondialdehyde contents, respectively. Ice crystal formation disrupted the structural integrity of the muscle tissue. Low-field nuclear magnetic resonance results showed that the freeze–thaw cycles prolonged the relaxation times (T2b, T21 and T22), indicating that immobile water shifted to free water, and consequently, free water mobility increased. After 3 freeze–thaw cycles, the decline in shear force slowed, the increase in thawing loss became accelerated, and the TAC approached the domain value (6 log colony-forming units/g). Therefore, the number of freeze–thaw cycles of smooth muscle during transport, storage and distribution should be controlled to 3 or fewer. The current results provide a theoretical basis and data support for the further utilisation and culinary processing of smooth muscle.  相似文献   
5.
6.
Chronic infection with Helicobacter pylori increases risk of gastric diseases including gastric cancer. Despite development of a robust immune response, H. pylori persists in the gastric niche. Progression of gastric inflammation to serious disease outcomes is associated with infection with H. pylori strains which encode the cag Type IV Secretion System (cag T4SS). The cag T4SS is responsible for translocating the oncogenic protein CagA into host cells and inducing pro-inflammatory and carcinogenic signaling cascades. Our previous work demonstrated that nutrient iron modulates the activity of the T4SS and biogenesis of T4SS pili. In response to H. pylori infection, the host produces a variety of antimicrobial molecules, including the iron-binding glycoprotein, lactoferrin. Our work shows that apo-lactoferrin exerts antimicrobial activity against H. pylori under iron-limited conditions, while holo-lactoferrin enhances bacterial growth. Culturing H. pylori in the presence of holo-lactoferrin prior to co-culture with gastric epithelial cells, results in repression of the cag T4SS activity. Concomitantly, a decrease in biogenesis of cag T4SS pili at the host-pathogen interface was observed under these culture conditions by high-resolution electron microscopy analyses. Taken together, these results indicate that acquisition of alternate sources of nutrient iron plays a role in regulating the pro-inflammatory activity of a bacterial secretion system and present novel therapeutic targets for the treatment of H. pylori-related disease.  相似文献   
7.
The esophagus is a tubular-shaped muscular organ where swallowed fluids and muscular contractions constitute a highly dynamic environment. The turbulent, coordinated processes that occur through the oropharyngeal conduit can often compromise targeted administration of therapeutic drugs to a lesion, significantly reducing therapeutic efficacy. Here, magnetically guidable drug vehicles capable of strongly adhering to target sites using a bioengineered mussel adhesive protein (MAP) to achieve localized delivery of therapeutic drugs against the hydrodynamic physiological conditions are proposed. A suite of highly uniform microparticles embedded with iron oxide (IO) nanoparticles (MAP@IO MPs) is microfluidically fabricated using the genipin-mediated covalent cross-linking of bioengineered MAP. The MAP@IO MPs are successfully targeted to a specific region and prolongedly retained in the tubular-structured passageway. In particular, orally administered MAP@IO MPs are effectively captured in the esophagus in vivo in a magnetically guidable manner. Moreover, doxorubicin (DOX)-loaded MAP@IO MPs exhibit a sustainable DOX release profile, effective anticancer therapeutic activity, and excellent biocompatibility. Thus, the magnetically guidable locomotion and robust underwater adhesive properties of the proteinaceous soft microbots can provide an intelligent modular approach for targeted locoregional therapeutics delivery to a specific lesion site in dynamic fluid-associated tubular organs such as the esophagus.  相似文献   
8.
《Ceramics International》2022,48(9):12014-12027
The formed deposits wear out of refractory wall linings in the rotary kiln and may cause production disturbances. This study describes the chemical composition and mineralogical phase components at the deposit/refractory interface in the rotary kiln for fluxed iron ore pellets production. The main phases of refractory bricks are corundum and mullite, while the deposits mainly contain hematite and silicates. The main phases in the deposit/refractory brick contact zone are hematite, anorthite (CaAl2Si2O8), mullite, corundum, and silicates. Moreover, the hematite phases in the deposit/brick interface averagely contain 6.98 wt% Al and 1.38 wt% Ti. The silicates in the contact zone contain higher aluminium content and lower iron content than the silicates in the deposits. Finally, the thermodynamic analysis indicates that the main phases in the deposits can react with the refractory to form Al2Fe2O6, CaAl2Si2O8, feldspar, and liquid phases lead to the degradation of bricks in the kiln during the iron ore pellets production.  相似文献   
9.
First‐order phase transitions, where one phase replaces another by virtue of a simple crossing of free energies, are best known between solids, liquids, and vapors, but they also occur in a wide range of other contexts, including even elemental magnets. The key challenges are to establish whether a phase transition is indeed first order, and then to determine how the new phase emerges because this will determine thermodynamic and electronic properties. Here it is shown that both challenges are met for the spin reorientation transition in the topological metallic ferromagnet Fe3Sn2. The magnetometry and variable temperature magnetic force microscopy experiments reveal that, analogous to the liquid–gas transition in the temperature–pressure plane, this transition is centered on a first‐order line terminating in a critical end point in the field‐temperature plane. The nucleation and growth associated with the transition is directly imaged, indicating that the new phase emerges at the most convoluted magnetic domain walls for the high temperature phase and then moves to self‐organize at the domain centers of the high temperature phase. The dense domain patterns and phase coexistence imply a complex inhomogenous electronic structure, which can yield anomalous contributions to the electrical conductivity.  相似文献   
10.
针对二连盆地乌兰花凹陷安山岩储层的特性认识不清、有效储层划分不准确的问题,利用岩心薄片、黏土矿物分析、物性测试以及核磁共振实验等手段开展了岩石储集空间特征、岩石蚀变程度、测井响应特征分析。在此基础上,重点开展了基于核磁共振实验的安山岩储层有效孔隙度计算模型研究,开发了相适应的测井解释评价模块,并结合常规测井和试油结果建立了安山岩储层的分类标准。结果表明:安山岩储集空间具有发育"微孔"、"杏仁孔"双孔隙的特征,且以微孔为主;根据不同蚀变程度所建立的安山岩有效孔隙度计算模型具有很高的精度,平均绝对误差为0.16%,平均相对误差为19.40%;新测井解释储层分类标准在实际应用中与试油结论具有很好的一致性,有利于乌兰花凹陷安山岩有效储层的精确划分,并为该地区开发方案的设计及可采储量评价提供技术支持。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号