首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45528篇
  免费   5599篇
  国内免费   2607篇
电工技术   670篇
综合类   2083篇
化学工业   6298篇
金属工艺   5519篇
机械仪表   7024篇
建筑科学   542篇
矿业工程   413篇
能源动力   519篇
轻工业   1482篇
水利工程   177篇
石油天然气   389篇
武器工业   555篇
无线电   16616篇
一般工业技术   8467篇
冶金工业   719篇
原子能技术   590篇
自动化技术   1671篇
  2024年   97篇
  2023年   757篇
  2022年   976篇
  2021年   1383篇
  2020年   1369篇
  2019年   1276篇
  2018年   1188篇
  2017年   1615篇
  2016年   1650篇
  2015年   1745篇
  2014年   2303篇
  2013年   2581篇
  2012年   2943篇
  2011年   3171篇
  2010年   2360篇
  2009年   2396篇
  2008年   2599篇
  2007年   2826篇
  2006年   2741篇
  2005年   2351篇
  2004年   2168篇
  2003年   1940篇
  2002年   1658篇
  2001年   1378篇
  2000年   1115篇
  1999年   1035篇
  1998年   861篇
  1997年   834篇
  1996年   717篇
  1995年   620篇
  1994年   596篇
  1993年   530篇
  1992年   410篇
  1991年   393篇
  1990年   281篇
  1989年   163篇
  1988年   168篇
  1987年   83篇
  1986年   88篇
  1985年   106篇
  1984年   91篇
  1983年   69篇
  1982年   52篇
  1981年   13篇
  1980年   8篇
  1979年   10篇
  1976年   3篇
  1975年   6篇
  1973年   2篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
系统阐述了基准平面垂直断面法在爆破漏斗试验中测量爆破漏斗体积的基本原理,并将隧道激光断面仪应用于金厂河矿1 750 m水平15#采场底部切割巷道爆破漏斗试验爆破漏斗体积测量中。通过与传统体重法等计算法所得漏斗体积分析比较,结果表明基于隧道激光断面仪与3D Mine软件分析的基准平面垂直断面法实用性强、操作方便、结果直观可靠,达到试验预期目的。  相似文献   
2.
林加富 《玻璃》2022,49(2):53-57
双玻光伏组件以其抗PID性强、防隐裂、防水汽透过、抗蜗牛纹、可靠性优异、轻量化等诸多优点,在晶硅太阳能组件市占比逐步提高。双玻光伏组件用背板玻璃一般需要预留出线孔,光伏背板玻璃的出线孔主要有两种打孔方式:金钢钻上下同步钻孔的模式和激光打孔。激光打孔以其易维护、可异形孔加工、效率高、生产成本低等优势得到各大玻璃厂的认可。通过分析在实际生产中激光打孔出现的打孔缺陷问题,提出了改善措施,有助于工厂的降本增效。  相似文献   
3.
Compositional analysis of boron carbide on nanometer length scales to examine or interpret atomic mechanisms, for example, solid-state amorphization or grain-boundary segregation, is challenging. This work reviews advancements in high-resolution microanalysis to characterize multiple generations of boron carbide. First, ζ-factor microanalysis will be introduced as a powerful (scanning) transmission electron microscopy ((S)TEM) analytical framework to accurately characterize boron carbide. Three case studies involving the application of ζ-factor microanalysis will then be presented: (1) accurate stoichiometry determination of B-doped boron carbide using ζ-factor microanalysis and electron energy loss spectroscopy, (2) normalized quantification of silicon grain-boundary segregation in Si-doped boron carbide, and (3) calibration of a scanning electron microscope X-ray energy-dispersive spectroscopy (XEDS) system to measure compositional homogeneity differences of B/Si-doped arc-melted boron carbides in the as-melted and annealed conditions. Overall, the improvement and application of advanced analytical tools have helped better understand processing–microstructure–property relationships and successfully manufacture high-performance ceramics.  相似文献   
4.
《Ceramics International》2022,48(24):36860-36870
For the advantages of high-temperature resistance, corrosion resistance and ultra-high hardness, SiCf/SiC composite is becoming a preferred material for manufacturing aero-engine parts. However, the anisotropy and heterogeneity bring great challenges to the processing technology. In this study, a nanosecond pulsed laser is applied to process SiCf/SiC composite, where the influence of the scanning speed and laser scanning direction to the SiC fibers on the morphology of ablated grooves is investigated. The surface characteristics after ablation and the involved chemical reaction of SiCf/SiC are explored. The results show that the increased laser scanning speed, accompanied by the decreasing spot overlap rate, leads to the less accumulation of energy on the material surface, so the ablation effect drops. In addition, for the anisotropy of the SiCf/SiC material, the obtained surface characteristics are closely dependent on the laser scanning direction to the SiC fibers, resulting in different groove morphology. The element composition and phase analysis of the machined surface indicate that the main deposited product is SiO2 and the carbon substance. The results can provide preliminary technical support for controlling the machining quality of ceramic matrix composites.  相似文献   
5.
High-efficiency Yb:Y2O3 laser ceramics were fabricated using the vacuum-sintering plus hot isostatic pressing (HIP) without sintering additives. High-purity well-dispersed nanocrystalline Yb:Y2O3 powder was synthesized using a modified co-precipitation method in-house. The green bodies were first vacuum sintered at a temperature as low as 1430°C and then HIPed at 1450°C. Finally, the samples were air annealed at 800°C for 10 h. Although no sintering aids were used, full density of the samples with excellent optical homogeneity and an inline transmission of 80% at 400 nm could be obtained. Moreover, photodarkening phenomenon was not detected in the ceramics. Preliminary laser experiment with the fabricated ceramics in a two-mirror cavity has demonstrated 32 W continuous-wave (CW) output at ∼1077 nm with an optical-to-optical conversion efficiency of 58.2%. To the best of our knowledge, this is so far the highest CW output power and optical-to-optical conversion efficiency achieved with the Yb3+-doped sesquioxide ceramics in a simple two-mirror cavity.  相似文献   
6.
Within the reactive oxygen species (ROS) generated by cellular metabolisms, hydroxyl radicals (HO) play an important role, being the most aggressive towards biomolecules. The reactions of HO with methionine residues (Met) in peptides and proteins have been intensively studied, but some fundamental aspects remain unsolved. In the present study we examined the biomimetic model made of Ac-Met-OMe, as the simplest model peptide backbone, and of HO generated by ionizing radiation in aqueous solutions under anoxic conditions. We performed the identification and quantification of transient species by pulse radiolysis and of final products by LC-MS and high-resolution MS/MS after γ-radiolysis. By parallel photochemical experiments, using 3-carboxybenzophenone (CB) triplet with the model peptide, we compared the outcomes in terms of short-lived intermediates and stable product identification. The result is a detailed mechanistic scheme of Met oxidation by HO, and by CB triplets allowed for assigning transient species to the pathways of products formation.  相似文献   
7.
In this study, a kind of Ni-based superalloy specially designed for additive manufacturing (AM) was investigated. Thermo-Calc simulation and differential scanning calorimetry (DSC) analysis were used to determine phases and their transformation temperature. Experimental specimens were prepared by laser metal deposition (LMD) and traditional casting method. Microstructure, phase constitution and mechanical properties of the alloy were characterized by scanning electron microscopy (SEM), transmission scanning electron microscopy (TEM), X-ray diffraction (XRD) and tensile tests. The results show that this alloy contains two basic phases, γ/γ', in addition to these phases, at least two secondary phases may be present, such as MC carbides and Laves phases. Furthermore, the as-deposited alloy has finer dendrite, its mean primary dendrite arm space (PDAS) is about 30-45 μm, and the average size of γ' particles is 100-150 nm. However, the dendrite size of the as-cast alloy is much larger and its PDAS is 300-500 μm with secondary and even third dendrite arms. Correspondingly, the alloy displays different tensile behavior with different processing methods, and the as-deposited specimen shows better ultimate tensile stress (1,085.7±51.7 MPa), yield stress (697±19.5 MPa) and elongation (25.8%±2.2%) than that of the as-cast specimen. The differences in mechanical properties of the alloy are due to the different morphology and size of dendrites, γ', and Laves phase, and the segregation of elements, etc. Such important information would be helpful for alloy application as well as new alloy development.  相似文献   
8.
This paper is devoted to microscopic methods for the identification of sulfate-reducing bacteria (SRB). In this context, it describes various habitats, morphology and techniques used for the detection and identification of this very heterogeneous group of anaerobic microorganisms. SRB are present in almost every habitat on Earth, including freshwater and marine water, soils, sediments or animals. In the oil, water and gas industries, they can cause considerable economic losses due to their hydrogen sulfide production; in periodontal lesions and the colon of humans, they can cause health complications. Although the role of these bacteria in inflammatory bowel diseases is not entirely known yet, their presence is increased in patients and produced hydrogen sulfide has a cytotoxic effect. For these reasons, methods for the detection of these microorganisms were described. Apart from selected molecular techniques, including metagenomics, fluorescence microscopy was one of the applied methods. Especially fluorescence in situ hybridization (FISH) in various modifications was described. This method enables visual identification of SRB, determining their abundance and spatial distribution in environmental biofilms and gut samples.  相似文献   
9.
10.
The present study investigated the effect of as-built and post heat-treated microstructures of IN738LC alloy fabricated via selective laser melting process on high temperature oxidation behavior.The as-built microstructure showed fine cell and columnar structure due to high cooling rate.Ti element segrega-tion was observed in inter-cell/inter-columnar area.After post heat-treatment,the initially-observed cell structure disappeared,instead bimodal Ni3(Al,Ti)particles formed.High temperature(1273 K and 1373 K)oxidation test results showed parabolic oxidation curves regardless of temperature and initial microstructure.The as-built IN738LC fabricated via the selective laser melting process displayed oxida-tion resistance similar to or slightly better than that of IN738LC fabricated via wrought or cast process.Heat-treated SLM IN738LC,although had similar oxidation weight-gain values to those of the SLM as-built material at 1273 K,showed relatively better oxidation resistance at 1373 K.Bimodal Ni3(Al,Ti)precipitate formed in the post heat treatment changed the local chemical composition,thereby led to changes in alumina former/chromia former location and fraction on the alloy surface.It was concluded that in heat-treated IN738LC increased alumina former fraction was found,and this resulted in excellent oxidation resistance and relatively low weight-gain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号