首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37714篇
  免费   5311篇
  国内免费   2649篇
电工技术   1042篇
综合类   2684篇
化学工业   10266篇
金属工艺   832篇
机械仪表   1406篇
建筑科学   521篇
矿业工程   1293篇
能源动力   679篇
轻工业   10777篇
水利工程   347篇
石油天然气   1624篇
武器工业   289篇
无线电   2389篇
一般工业技术   1798篇
冶金工业   1440篇
原子能技术   752篇
自动化技术   7535篇
  2024年   151篇
  2023年   656篇
  2022年   1182篇
  2021年   1477篇
  2020年   1548篇
  2019年   1301篇
  2018年   1205篇
  2017年   1430篇
  2016年   1529篇
  2015年   1751篇
  2014年   2325篇
  2013年   2848篇
  2012年   3748篇
  2011年   3368篇
  2010年   2290篇
  2009年   2183篇
  2008年   2048篇
  2007年   2568篇
  2006年   2203篇
  2005年   1738篇
  2004年   1369篇
  2003年   1200篇
  2002年   888篇
  2001年   746篇
  2000年   665篇
  1999年   538篇
  1998年   450篇
  1997年   410篇
  1996年   302篇
  1995年   295篇
  1994年   207篇
  1993年   175篇
  1992年   185篇
  1991年   119篇
  1990年   109篇
  1989年   76篇
  1988年   56篇
  1987年   62篇
  1986年   37篇
  1985年   49篇
  1984年   42篇
  1983年   35篇
  1982年   22篇
  1981年   14篇
  1980年   15篇
  1979年   8篇
  1978年   6篇
  1977年   6篇
  1959年   16篇
  1951年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Investigation on the miniaturized parallel multichannel-based devices packed with glass beads to improve the mass exchange execution is the critical focal point of the current study. One of the essential parameters to specify the miniaturized devices' flow distribution is the residence time distribution (RTD). In the present context, the RTDs of a liquid tracer were investigated for the air-water multiphase flows (concurrent) across the multichannel-based miniaturized devices (comprising of 11 similar dimensional parallel channels). The devices were variable in height and packed with glass beads. The conductivity estimations generated the RTD curves and were addressed by the axial dispersion model (ADM). The fluid-flow rates differed within the range of 5–23 ml min−1. The axial dispersion coefficients and the rate of the specific energy dispersion were investigated. The effects of pressure difference and geometry on the hydrodynamic attributes and mixing properties were well-illustrated, and the new correlations were suggested.  相似文献   
2.
3.
Gelatin is one of the most important multifunctional biopolymers and is widely used as an essential ingredient in food, pharmaceutical, and cosmetics. Porcine gelatin is regarded as the leading source of gelatin globally then followed by bovine gelatin. Porcine sources are favored over other sources since they are less expensive. However, porcine gelatin is religiously prohibited to be consumed by Muslims and the Jewish community. It is predicted that the global demand for gelatin will increase significantly in the future. Therefore, a sustainable source of gelatin with efficient production and free of disease transmission must be developed. The highest quality of Bovidae-based gelatin (BG) was acquired through alkaline pretreatment, which displayed excellent physicochemical and rheological properties. The utilization of mammalian- and plant-based enzyme significantly increased the gelatin yield. The emulsifying and foaming properties of BG also showed good stability when incorporated into food and pharmaceutical products. Manipulation of extraction conditions has enabled the development of custom-made gelatin with desired properties. This review highlighted the various modifications of extraction and processing methods to improve the physicochemical and functional properties of Bovidae-based gelatin. An in-depth analysis of the crucial stage of collagen breakdown is also discussed, which involved acid, alkaline, and enzyme pretreatment, respectively. In addition, the unique characteristics and primary qualities of BG including protein content, amphoteric property, gel strength, emulsifying and viscosity properties, and foaming ability were presented. Finally, the applications and prospects of BG as the preferred gelatin source globally were outlined.  相似文献   
4.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   
5.
To save bandwidth and storage space as well as speed up data transmission, people usually perform lossy compression on images. Although the JPEG standard is a simple and effective compression method, it usually introduces various visually unpleasing artifacts, especially the notorious blocking artifacts. In recent years, deep convolutional neural networks (CNNs) have seen remarkable development in compression artifacts reduction. Despite the excellent performance, most deep CNNs suffer from heavy computation due to very deep and wide architectures. In this paper, we propose an enhanced wide-activated residual network (EWARN) for efficient and accurate image deblocking. Specifically, we propose an enhanced wide-activated residual block (EWARB) as basic construction module. Our EWARB gives rise to larger activation width, better use of interdependencies among channels, and more informative and discriminative non-linearity activation features without more parameters than residual block (RB) and wide-activated residual block (WARB). Furthermore, we introduce an overlapping patches extraction and combination (OPEC) strategy into our network in a full convolution way, leading to large receptive field, enforced compatibility among adjacent blocks, and efficient deblocking. Extensive experiments demonstrate that our EWARN outperforms several state-of-the-art methods quantitatively and qualitatively with relatively small model size and less running time, achieving a good trade-off between performance and complexity.  相似文献   
6.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
7.
A venturi device is commonly used as an integral part of a multiphase flowmeter (MPFM) in real-time oil-gas production monitoring. Partial flow mixing is required by installing the venturi device vertically downstream of a blind tee pipework that conditions the incoming horizontal gas-liquid flow (for an accurate determination of individual phase fraction and flow rate). To study the flow-mixing effect of the blind tee, high-speed video flow visualization of gas-liquid flows has been performed at blind tee and venturi sections by using a purpose-built transparent test rig over a wide range of superficial liquid velocities (0.3–2.4 m/s) and gas volume fractions (10–95%). There is little ‘homogenization’ effect of the blind tee on the incoming intermittent horizontal flow regimes across the tested flow conditions, with the flow remaining intermittent but becoming more axis-symmetric and predictable in the venturi measurement section. A horizontal (blind tee) to vertical (venturi) flow-pattern transition map is proposed based on gas and liquid mass fluxes (weighted by the Baker parameters). Flow patterns can be identified from the mean and variance of a fast electrical capacitance holdup measured at the venturi throat.  相似文献   
8.
文猛  张释如 《包装工程》2022,43(21):162-168
目的 为了解决目前三维数据隐藏算法不能兼顾无失真和盲提取的问题,提出一种新的完全无失真的三维网格模型数据隐藏盲算法。方法 首先使用混沌逻辑映射选择嵌入与提取模式,保证数据的安全性。然后利用面元素重排,完全不会造成三维模型失真的性质,通过不同嵌入模式规则对三角面元素进行重排,以嵌入秘密数据。接收端则可根据相应的提取模式规则提取秘密数据。结果 仿真结果与分析表明,该算法不会对三维模型造成任何失真,嵌入容量为每顶点2比特,且能抵抗仿射变换攻击、噪声攻击和平滑攻击等。结论 这种三维数据隐藏盲算法无失真,容量大、安全性高、鲁棒性强,适用于三维载体不容修改的情形,如军事、医学、秘密通信和版权保护等。  相似文献   
9.
Reliable prediction of flooding conditions is needed for sizing and operating packed extraction columns. Due to the complex interplay of physicochemical properties, operational parameters and the packing-specific properties, it is challenging to develop accurate semi-empirical or rigorous models with a high validity range. State of the art models may therefore fail to predict flooding accurately. To overcome this problem, a data-driven model based on Gaussian processes is developed to predict flooding for packed liquid-liquid and high-pressure extraction columns. The optimized Gaussian process for the liquid-liquid extraction column results in an average absolute relative error (AARE) of 15.23 %, whereas the algorithm for the high-pressure extraction column results in an AARE of 13.68 %. Both algorithms can predict flooding curves for different packing geometries and chemical systems precisely.  相似文献   
10.
电力系统维护是电力系统稳定运行的重要保障,应用智能算法的无人机电力巡检则为电力系统维护提供便捷。电力线提取是自主电力巡检以及保障飞行器低空飞行安全的关键技术,结合深度学习理论进行电力线提取是电力巡检的重要突破点。本文将深度学习方法用于电力线提取任务,结合电力线图像特点嵌入改进的图像输入策略和注意力模块,提出一种基于阶段注意力机制的电力线提取模型(SA-Unet)。本文提出的SA-Unet模型编码阶段采用阶段输入融合策略(Stage input fusion strategy, SIFS),充分利用图像的多尺度信息减少空间位置信息丢失。解码阶段通过嵌入阶段注意力模块(Stage attention module,SAM)聚焦电力线特征,从大量信息中快速筛选出高价值信息。实验结果表明,该方法在复杂背景的多场景中具有良好的性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号