首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1548篇
  免费   34篇
  国内免费   47篇
电工技术   36篇
综合类   21篇
化学工业   207篇
金属工艺   373篇
机械仪表   108篇
建筑科学   23篇
矿业工程   10篇
能源动力   86篇
轻工业   71篇
水利工程   6篇
石油天然气   23篇
武器工业   3篇
无线电   179篇
一般工业技术   205篇
冶金工业   42篇
原子能技术   47篇
自动化技术   189篇
  2024年   2篇
  2023年   40篇
  2022年   39篇
  2021年   53篇
  2020年   41篇
  2019年   34篇
  2018年   23篇
  2017年   47篇
  2016年   27篇
  2015年   40篇
  2014年   58篇
  2013年   65篇
  2012年   90篇
  2011年   108篇
  2010年   75篇
  2009年   94篇
  2008年   76篇
  2007年   84篇
  2006年   98篇
  2005年   75篇
  2004年   67篇
  2003年   54篇
  2002年   48篇
  2001年   45篇
  2000年   49篇
  1999年   47篇
  1998年   32篇
  1997年   17篇
  1996年   22篇
  1995年   17篇
  1994年   11篇
  1993年   10篇
  1992年   9篇
  1991年   11篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有1629条查询结果,搜索用时 104 毫秒
1.
《Ceramics International》2022,48(17):24540-24549
In this study, we investigated the physical and chemical properties of H2 plasma-treated tin oxide (SnOX) thin films, followed by their applications in ambipolar thin-film transistors (TFTs). Finely controlled H2 implantation was carried out using a reactive-ion-etching system at a radio frequency power of 30 W and under various exposure times. H2 plasma treatments induced changes in the chemical structures and surface morphologies of the SnOX thin films, including a partial phase transformation of Sn and SnO to SnO2. The defects originating from oxygen vacancies (OVacs) in the SnOX thin films were passivated by H via the formation of Sn–H bonds, which decreased the density of subgap states in the SnOX thin films. The H2 plasma-treated SnOX TFTs showed considerably improved ambipolarity and electrical performance. Complementary metal–oxide–semiconductor (CMOS) logic inverters comprising H2-plasma-treated ambipolar SnOX TFTs exhibited a maximum gain of 34.5 V/V at a supply voltage of 10 V. The results of this study present the meaningful investigation of H2 plasma-treated ambipolar SnOX TFTs that can be used to fabricate CMOS circuits for various applications.  相似文献   
2.
《Ceramics International》2022,48(11):15462-15469
Due to its unique artistic value, mosaic ceramics are widely used in construction-related fields. To meet the artist's demand for high-quality mosaic ceramic to create artistic works, it is necessary to meet the needs for efficient screening of mosaic ceramic tiles. Different from the ordinary large-target ceramics, mosaic ceramics exhibit characteristics of small tile sizes, a variety of colors, large demand for quantities, and easy reflection on the surface. Common manual detection methods show problems of low efficiency or accuracy, easy to fatigue, and many others. To solve these problems, this paper proposes a new detection method to identify surface defects of mosaic ceramic tiles and designs a detection system platform to achieve rapid detection. The experiment proves that the detection system has a detection rate of 93.99% for small defects on the surface of mosaic ceramic tiles, and the detection time of a single mosaic ceramic tile is less than 0.06 s. The detection method can quickly and accurately screen out high-quality, defect-free mosaic ceramic tiles, which can effectively improve the quality and artistic value of mosaic ceramic art creation.  相似文献   
3.
The materials processing history has a great influence on their properties and finally determines their application effect. In this paper, the ferroelectric, polarization-switching current, and strain properties of Mn-doped 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 ceramics were studied in fresh state, aged state, and poled state, respectively. Compared with the symmetric polarization-electric-field (P-E) hysteresis loops, current-density-electric-field (J-E) curves, and bipolar electric-field-induced strain (S-E) curves in fresh state samples, asymmetric P-E loops, J-E curves, and bipolar S-E curves were obtained in poled state samples. Well-aged-state samples exhibit double hysteresis P-E loop, four peaks J-E curves, and symmetric S-E curves without negative strain. The symmetry-conforming short-range order (SC-SRO) principle of point defects and internal electric field Ei is employed to clarify the different phenomenon of three states. Results indicated that randomly oriented defect polarization PD in aged samples can reverse the spontaneous polarization PS back and result in the double hysteresis P-E loop and four peaks J-E curves. The oriented PD and resulting Ei in poled-state samples will lead to the asymmetric loops and strain memory effect.  相似文献   
4.
ZnO is an important material which has been widely applied in photodetector, catalyst, gas sensor, field emitter, etc. Yet, its inability to absorb visible light, poor charge transport, and low conductivity limit the application of these devices. Recently, it was discovered that introduction of defects such as oxygen and zinc vacancies into ZnO can effectively improve the existing properties or lead to new and unexpected yet highly desirable characteristics. Herein, we present a systematic review on the available approaches to synthesize oxygen- and/or zinc-deficient ZnO with emphasis on their chemical, structural, and electrical particularities. Furthermore, applications of defective ZnO in various nanoscale devices are discussed in terms of their functionality, reliability, and performance. Finally, we summarize major challenges and offer perspectives for further research in this field. We hope that this review would make a valuable contribution to broaden the knowledge of defective ZnO.  相似文献   
5.
细炻砖作为仿古砖的一个重要组成部分一直在家庭装修中被广泛应用。在细炻砖的生产过程中,铜锈在浅色版面中容易显露出来,占总缺陷的比例比较大,也降低了产品的品质。本文用XRF对原材料和坯体配方进行了定性分析,用SEM对铜锈进行了表面形貌分析,用EDS对铜锈进行了元素分析。结果表明,铜锈主要是原料中的有色金属杂质引起。通过加强浆料的过筛,降低浆料的细度可以有效减少铜锈的产生。  相似文献   
6.
To meet the demand of producing hydrogen at low cost, a molybdenum (Mo)-doped cobalt oxide (Co3O4) supported on nitrogen (N)-doped carbon (x%Mo–Co3O4/NC, where x% represents Mo/Co molar ratio) is developed as an efficient bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). This defect engineering strategy is realized by a facile urea oxidation method in nitrogen atmosphere. Through X-ray diffraction (XRD) refinement and other detailed characterizations, molybdenum ion (Mo4+) is found to be doped into Co3O4 by substituting cobalt ion (Co2+) at tetrahedron site, while N is doped into carbon matrix simultaneously. 4%Mo–Co3O4/NC is the optimized sample to show the lowest overpotentials of 91 and 276 mV to deliver 10 mA cm?2 for HER and OER in 1 M potassium hydroxide solution (KOH), respectively. The overall water splitting cell 4%Mo–Co3O4/NC||4%Mo–Co3O4/NC displays a voltage of 1.62 V to deliver 10 mA cm?2 in 1 M KOH. The Mo4+ dopant modulates the electronic structure of active cobalt ion (Co3+) and boosts the water dissociation process during HER, while the increased amount of lattice oxygen and formation of pyridinic nitrogen due to Mo doping benefits the OER activity. Besides, the smaller grain size owing to Mo doping leads to higher electrochemically active surface area (ECSA) on 4%Mo–Co3O4/NC, resulting in its superior bifunctional catalytic activity.  相似文献   
7.
Here, the storage sites of hydrogen in FeCr alloy, namely (H, He)–V nano-clusters with open volume, have been investigated by first-principles calculations and positron annihilation spectroscopy. The positron lifetimes in the nano-clusters obtained by theoretical calculations and experiments were compared. These results suggest that positron is sensitive to the relative position of the gas atoms decorating the open volume; and a helium atom forms a more repulsive ion core than a hydrogen atom when it occupies the vacancy, resulting in a decrease in positron lifetime. Interpretation of the PAS data was successfully combined with theoretical calculations, and allowed us to determine the defect status in specimens after H/He irradiation with different implantation patterns. The speculated kinds of hydrogen storage sites formed after irradiation are summarized. For the He-ions pre-implanted situation, the helium-vacancy clusters or bubbles forming in advance may recombine with H atoms to form stable He–H–V complex.  相似文献   
8.
介绍纺织面料成品检验语音输入系统的方案设计,通过语音识别与合成技术构建语音录入系统,通过自适应学习提高识别效率。阐述通过成品检验环境噪音测试、验布工人声音采集建立语音系统,以及该系统在语音验布上的应用。经过应用测试显示,使用语音系统代替手写录入可使疵点检验率从57%提升到73%。在针织成品检验中采用语音录入系统能够快速录入疵点信息,提高检验效率,进一步简化验布工操作流程,降低漏验和堵布风险,提高面料整体的质量控制能力。  相似文献   
9.
The electrical properties of cubic, calcia-stabilised zirconia ceramics, CaxZr1-xO2-x: 0.12 ≤ x ≤ 0.18 have been investigated using impedance spectroscopy to separate bulk, grain boundary and electrode contact impedances. The most appropriate equivalent circuit to characterise the bulk response required inclusion of a dielectric component, represented by a series RC element, in parallel with the oxide ion conductivity represented by a parallel combination of a resistance, capacitance and constant phase element. The dielectric component may be attributed to defect complexes involving immobile oxygen vacancy pairs whereas long range conduction involves single oxygen vacancies.  相似文献   
10.
We propose a new method of inspecting a surface for fine defects that combines the optical inspection method with observation of the physical behavior of a liquid. A liquid thin film on a substrate behaves as a near-field physical probe that autonomously captures nano-particulate defects. Optical observation of the interfacial behavior of the liquid thin film is used to detect minute defects. This method combines the characteristics of optical detection (i.e., detection from a remote field and simultaneous detectability on a plane) and the high sensitivity of a physical near-field probe. We examined the basic principles of the proposed method through numerical calculation and applied it in experiments to detect fine particulate defects on a silicon substrate for semiconductor manufacturing to demonstrate the validity of the basic concept of the proposed method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号