首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11590篇
  免费   1782篇
  国内免费   732篇
电工技术   308篇
综合类   746篇
化学工业   4746篇
金属工艺   1385篇
机械仪表   606篇
建筑科学   421篇
矿业工程   139篇
能源动力   192篇
轻工业   578篇
水利工程   465篇
石油天然气   171篇
武器工业   105篇
无线电   874篇
一般工业技术   1819篇
冶金工业   416篇
原子能技术   42篇
自动化技术   1091篇
  2024年   32篇
  2023年   199篇
  2022年   263篇
  2021年   471篇
  2020年   439篇
  2019年   422篇
  2018年   453篇
  2017年   538篇
  2016年   572篇
  2015年   567篇
  2014年   716篇
  2013年   815篇
  2012年   811篇
  2011年   835篇
  2010年   666篇
  2009年   681篇
  2008年   636篇
  2007年   726篇
  2006年   694篇
  2005年   508篇
  2004年   495篇
  2003年   417篇
  2002年   343篇
  2001年   249篇
  2000年   217篇
  1999年   201篇
  1998年   185篇
  1997年   170篇
  1996年   94篇
  1995年   115篇
  1994年   87篇
  1993年   74篇
  1992年   86篇
  1991年   71篇
  1990年   47篇
  1989年   40篇
  1988年   21篇
  1987年   23篇
  1986年   14篇
  1985年   24篇
  1984年   20篇
  1983年   12篇
  1982年   33篇
  1981年   7篇
  1980年   1篇
  1979年   6篇
  1978年   2篇
  1977年   1篇
  1975年   4篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 406 毫秒
1.
Steam reforming of liquid hydrocarbon fuels is an appealing way for the production of hydrogen. In this work, the Rh/Al2O3 catalysts with nanorod (NR), nanofiber (NF) and sponge-shaped (SP) alumina supports were successfully designed for the steam reforming of n-dodecane as a surrogate compound for diesel/jet fuels. The catalysts before and after reaction were well characterized by using ICP, XRD, N2 adsorption, TEM, HAADF-STEM, H2-TPR, CO chemisorption, NH3-TPD, CO2-TPD, XPS, Al27 NMR and TG. The results confirmed that the dispersion and surface structure of Rh species is quite dependent on the enclosed various morphologies. Rh/Al2O3-NR possesses highly dispersed, uniform and accessible Rh particles with the highest percentage of surface electron deficient Rh0 active species, which due to the unique properties of Al2O3 nanorod including high crystallinity, relatively large alumina particle size, thermal stability, and large pore volume and size. As a consequent, Rh/Al2O3-NR catalyst exhibited superior catalytic activity towards steam reforming reactions and hydrogen production rate over other two catalysts. Especially, Rh/Al2O3-NR catalyst showed the highest hydrogen production rate of 87,600 mmol gfuel?1 gRh?1min?1 among any Rh-based catalysts and other noble metal-based catalysts to date. After long-term reaction, a significant deactivation occurred on Rh/Al2O3–NF and Rh/Al2O3-SP catalysts, due to aggregation and sintering of Rh metal particles, coke deposition and poor hydrothermal stability of nanofibrous structure. In contrast, the Rh/Al2O3-NR catalyst shows excellent reforming stability with negligible coke formation. No significantly sintering and aggregation of the Rh particles is observed after long-term reaction. Such great catalyst stability can be explained by the role of hydrothermal stable nanorod alumina support, which not only provides a unique environment for the stabilization of uniform and small-size Rh particles but also affords strong surface basic sites.  相似文献   
2.
The aim of this work was to investigate the physical and mechanical performance of architectural polyester (PES)–poly(vinyl chloride) (PVC) membranes exposed to different artificial aging conditions. Two commercially available architectural membranes were chosen as research objects. The durability of the PES/PVC fabrics was evaluated by the loss in mechanical performance, scanning electron microscopy, and X-ray diffraction analysis in order to understand the effect of the degradation agents on the surface of the membranes. The mechanical performance of the PES/PVC membranes was unchanged. Scanning electron microscopy images of the tested materials showed initial cracks after aging. The X-ray fluorescence analysis showed that at the time of aging, the amount of Cl and Si decreased slightly, while Ti decreased by half, and Ca by volume increased twice. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47523.  相似文献   
3.
In this study, blends of the bio-based poly(limonene carbonate) (PLimC) with different commodity polymers are investigated in order to explore the potential of PLimC toward generating more sustainable polymer materials by reducing the amount of petro- or food-based polymers. PLimC is employed as minority component in the blends. Next to the morphology and thermal properties of the blends the impact of PLimC on the mechanical properties of the matrix polymers is studied. The interplay of incompatibility and zero-shear melt viscosity contrast determines the blend morphology, leading for all blends to a dispersed droplet morphology for PLimC. Blends with polymers of similar structure to PLimC (i.e., aliphatic/aromatic polyester) show the best performance with respect to mechanical properties, whereas blends with polystyrene or poly(methyl methacrylate) are too brittle and polyamide 12 blends show very low elongations at break. In blends with Ecoflex (poly(butylene adipate-co-terephthalate)) and Arnitel EM400 (copoly(ether ester)) with poly(butylene terephthalate) hard and polytetrahydrofuran soft segments) a threefold increase in E-modulus can be achieved, while keeping the elongation at break at reasonable high values of ≈200%, making these blends highly interesting for applications.  相似文献   
4.
《Ceramics International》2022,48(4):5066-5074
We studied the morphological nature of various thin films such as silicon carbide (SiC), diamond (C), germanium (Ge), and gallium nitride (GaN) on silicon substrate Si(100) using the pulsed laser deposition (PLD) method and Monte Carlo simulation. We, for the first time, systematically employed the visibility algorithm graph to meticulously study the morphological features of various PLD grown thin films. These thin-film morphologies are investigated using random distribution, Gaussian distribution, patterned heights, etc. The nature of the interfacial height of individual surfaces is examined by a horizontal visibility graph (HVG). It demonstrates that the continuous interfacial height of the silicon carbide, diamond, germanium, and gallium nitride films are attributed to random distribution and Gaussian distribution in thin films. However, discrete peaks are obtained in the brush and step-like morphology of germanium thin films. Further, we have experimentally verified the morphological nature of simulated silicon carbide, diamond, germanium, and gallium nitride thin films were grown on Si(100) substrate by pulsed laser deposition (PLD) at elevated temperature. Various characterization techniques have been used to study the morphological, and electrical properties which confirmed the different nature of the deposited films on the Silicon substrate. Decent hysteresis behavior has been confirmed by current-voltage (IV) measurement in all the four deposited films. The highest current has been measured for GaN at ~60 nA and the lowest current in SiC at ~30 nA level which is quite low comparing with the expected signal level (μA). The HVG technique is suitable to understand surface features of thin films which are substantially advantageous for the energy devices, detectors, optoelectronic devices operating at high temperatures.  相似文献   
5.
Material encapsulation is a relatively new technique for coating a micro/nanosize particle or droplet with polymeric or inorganic shell. Encapsulation technology has many applications in various fields including drug delivery, cosmetic, agriculture, thermal energy storage, textile, and self-healing polymers. Poly(methyl methacrylate) (PMMA) is widely used as shell material in encapsulation due to its high chemical stability, biocompatibility, nontoxicity, and good mechanical properties. The main approach for micro/nanoencapsulation of materials using PMMA as shell comprises emulsion-based techniques such as emulsion polymerization and solvent evaporation from oil-in-water emulsion. In the present review, we first focus on the encapsulation techniques of liquid materials with PMMA shell by analyzing the effective processing parameters influencing the preparation of PMMA micro/nanocapsules. We then describe the morphology of PMMA capsules in emulsion systems according to thermodynamic relations. The techniques to investigation of mechanical properties of capsule shell and the release mechanisms of core material from PMMA capsules were also investigated. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48039.  相似文献   
6.
Surface texture is considered an important measure to improve the cutting performance of a tool. In this study, we have prepared three types of textured and conventional tools on the rake face by an in-situ formed method. During the experiment, the best parameters of three types of textured tools were selected for dry cutting AISI 1045 steel at different cutting speeds. Cutting forces, cutting temperatures, workpiece surface roughness, and tool wear were measured during the cutting process. The results showed that textured tools have significantly reduced cutting force, cutting temperature, and tool wear, and the roughness of the workpiece was improved compared with the conventional tool. The micro-pit texture tool has less stress contact region than the micro-groove width texture tool, but the micro-groove width texture tool exhibiting the best cutting performance. This investigation clearly showed that the textured tool prepared by the in-situ formed method has improved cutting performance.  相似文献   
7.
通过对干熄焦锅炉炉管及腐蚀产物开展系统研究,提出炉管失效原因为氧化/硫腐蚀+高温粉尘冲刷。长寿命炉管仅耐磨层发生了较为严重的氧化及硫腐蚀,而近基体层发生了轻微氧化及硫腐蚀,基体只发生了轻微氧化;短寿命炉管耐磨层、近基体层以及基体裂纹内均发生了较为严重的氧化及硫腐蚀,且存在珠光体球化、内表面产生全脱碳层等缺陷。推测短寿命炉管存在超温现象,而超温可加剧氧化及硫腐蚀反应。此外,短寿命炉管遭受了较为严重的高温粉尘冲刷,不仅可造成炉管减薄,还会导致炉管表面温度升高。因此,减少循环气体中粉尘量尤其是大颗粒,可有效减弱冲刷以及控制炉管表面温度,是提高炉管使用寿命的关键。  相似文献   
8.
采用脉冲电沉积技术在304不锈钢表面制备Ni-Cu合金镀层,镀液组成和工艺条件为:NiSO4ꞏ6H2O 200g/L,CuSO4ꞏ5H2O 10 g/L,十二烷基硫酸钠0.2 g/L,柠檬酸钠80 g/L,糖精0.2 g/L,pH 4.0,温度25°C,搅拌速率30 r/min,平均电流密度40~120 mA/cm2,脉冲频率0~100 Hz,占空比20%~90%,时间30 min。研究了平均电流密度、脉冲频率和占空比对Ni-Cu合金镀层的元素组成、表面形貌和显微硬度的影响,得到较优的工艺参数为:平均电流密度40 mA/cm2,脉冲频率50 Hz,占空比60%。该条件下所得Ni-Cu合金镀层由质量分数分别为56.53%和43.47%的Ni和Cu组成,呈“菜花”状形貌,结晶细致、均匀,显微硬度为614.4 HV。  相似文献   
9.
The presented article characterized microstructural aspects of thermal barrier coatings (TBCs) analysis using methods of electron microscopy such as electron backscatter diffraction (EBSD), transmission/scanning electron microscopy (S/TEM), and TEM. The analyzed TBC system is based on gadolinium zirconate deposited by air plasma spraying method, and additionally, it was subjected to an oxidation test for 500 hr at a temperature of 1,100°C. Moreover, the morphological characterization of feedstock powder was showed. EBSD analysis revealed the inhomogeneity of feedstock materials in the form of complex phase composition. In the case of deposited coating, this method was used to characterize the crystallite size of zirconate coating and phase composition of thermally grown oxide zone. S/TEM and TEM analysis showed morphological details of this zone but not revealed such phase as perovskite oxide of GdAlO3 type.  相似文献   
10.
摘要:为了研究300M超高强钢在中性盐雾环境中的腐蚀行为及腐蚀机制,采用失重法,宏观、微观腐蚀形貌分析,三维表面轮廓分析及电化学分析的研究方法,来表征腐蚀实验现象并进行分析。结果表明:300M超高强钢在中性盐雾环境中的腐蚀产物为FeOOH、Fe2O3、Fe(OH)3和Fe3O4;腐蚀速率随着腐蚀时间逐渐降低,腐蚀后期(72h)腐蚀速率降低50%;腐蚀初期以点蚀为主,点蚀坑通过横向扩展,逐渐发展为后期的均匀腐蚀,腐蚀表面形貌呈沟壑状;外腐蚀层对基体的保护能力很弱,Cr元素在锈层靠近基体的一侧偏聚使内腐蚀层具有一定的抗腐蚀性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号