首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49883篇
  免费   6665篇
  国内免费   3941篇
电工技术   4342篇
综合类   5022篇
化学工业   6520篇
金属工艺   2774篇
机械仪表   2274篇
建筑科学   3109篇
矿业工程   1071篇
能源动力   2227篇
轻工业   2321篇
水利工程   1099篇
石油天然气   1943篇
武器工业   693篇
无线电   6335篇
一般工业技术   5425篇
冶金工业   1886篇
原子能技术   986篇
自动化技术   12462篇
  2024年   103篇
  2023年   697篇
  2022年   1209篇
  2021年   1478篇
  2020年   1764篇
  2019年   1705篇
  2018年   1550篇
  2017年   1975篇
  2016年   2114篇
  2015年   2198篇
  2014年   2984篇
  2013年   3885篇
  2012年   3484篇
  2011年   3701篇
  2010年   2763篇
  2009年   2980篇
  2008年   2873篇
  2007年   3296篇
  2006年   3045篇
  2005年   2522篇
  2004年   2124篇
  2003年   1956篇
  2002年   1701篇
  2001年   1439篇
  2000年   1204篇
  1999年   887篇
  1998年   747篇
  1997年   640篇
  1996年   528篇
  1995年   477篇
  1994年   395篇
  1993年   329篇
  1992年   250篇
  1991年   246篇
  1990年   199篇
  1989年   187篇
  1988年   122篇
  1987年   104篇
  1986年   70篇
  1985年   97篇
  1984年   73篇
  1983年   45篇
  1982年   59篇
  1981年   42篇
  1980年   37篇
  1979年   29篇
  1978年   19篇
  1977年   14篇
  1975年   13篇
  1964年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
频率特性分析在工程应用中具有重要的作用,在电路分析、模拟电子技术、信号与系统、自动控制理论等相关课程中都涉及到相关章节内容,在不同课程中如何根据工程应用和学生学习阶段把握具体的讲解内容和讲解方式非常重要。本文从频率特性的求解方法和具体物理意义角度开展在不同课程中讲解的方法,从时域和频域角度分别讨论其物理意义和具体的分析方法。通过渐进深化的教学过程和教学方法不断提高学生的知识掌握和应用技能,提高学生的工程意识、工程素质和工程创新能力,强化学生对于频率特性课程知识的综合应用能力。  相似文献   
2.
The transient liquid phase (TLP) bonding of CoCuFeMnNi high entropy alloy (HEA) was studied. The TLP bonding was performed using AWS BNi-2 interlayer at 1050 °C with the TLP bonding time of 20, 60, 180 and 240 min. The effect of bonding time on the joint microstructure was characterized by SEM and EDS. Microstructural results confirmed that complete isothermal solidification occurred approximately at 240 min of bonding time. For samples bonded at 20, 60 and 180 min, athermal solidification zone was formed in the bonding area which included Cr-rich boride and Mn3Si intermetallic compound. For all samples, the γ solid solution was formed in the isothermal solidification zone of the bonding zone. To evaluate the effect of TLP bonding time on mechanical properties of joints, the shear strength and micro-hardness of joints were measured. The results indicated a decrement of micro-hardness in the bonding zone and an increment of micro-hardness in the adjacent zone of joints. The minimum and maximum values of shear strength were 100 and 180 MPa for joints with the bonding time of 20 and 240 min, respectively.  相似文献   
3.
Various products, including foods and pharmaceuticals, are sensitive to temperature fluctuations. Thus, temperature monitoring during production, transportation, and storage is critical. Facile indicators are required to monitor temperature conditions via color changes in real time. This study aimed to prepare and apply thiol-functionalized covalent organic frameworks (COFs) as a novel indicator for monitoring thermal history and temperature abuse. The COFs underwent obvious color changes from bright yellow to purple after exposure to different temperatures for varying durations. The reaction kinetics are analyzed under isothermal conditions, which reveal that the order of reaction rates is k−20°C < k4°C < k20°C < k35°C < k55°C. The activation energy (Ea) of the COFs is calculated using the Arrhenius equation as 50.71 kJ moL−1. The COFs are capable of sensitive color changes and offer a broad temperature tracking range, thereby demonstrating their application potential for the monitoring of temperature and time exposure history during production, transportation, and storage. This excellent performance thermal history indicator also shows promise for expanding the application field of COFs.  相似文献   
4.
To quantitatively investigate the initial crystallization of zeolite beta synthesized by direct heating, the extent of the reaction was precisely evaluated by X-ray diffraction measurements and Rietveld structural refinement, and a kinetic analysis of crystallization was performed using the Avrami-Erofe'ev equation. The activation energy for crystallization was lower than that for hydrothermal synthesis. Reaction and synthesis time curves revealed that the initial zeolite beta crystallization consisted of three stages. The first was an induction period with nucleation by the generation of building units and the formation of an initial coordinated structure. The second stage was crystal growth by a diffusion-controlled reaction, and the third stage involved slowing down of crystallization by the limitation of dehydrocondensation. These stages could be analyzed by calculation of the rate constant and Avrami exponent for each stage.  相似文献   
5.
Hydrodynamics characteristics of a fast and highly exothermic liquid–liquid oxidation process with in situ gas production in microreactors were studied using a newly developed experimental method. In the adipic acid synthesis through the K/A oil (the mixture of cyclohexanol and cyclohexanone) oxidation with nitric acid, bubble generation modes were divided into four categories. The gas production became more intensive, unstable, even explosive with increasing the oil phase feed rate and the temperature. A novel automatic image processing method was developed to monitor the instantaneous velocity online by tracking the gas–liquid interface. The axial velocity at the same location was unstable due to the changing gas production rate. Furthermore, the actual residence time was obtained easily with being only 36% of the space–time minimally, beneficial for establishing accurate kinetics and mass transfer models with time participation. Finally, an empirical correlation was developed to predict the actual residence time under different conditions.  相似文献   
6.
The joining of liquid-phase sintered SiC (LPS-SiC) ceramics was conducted using spark plasma sintering (SPS), through solid state diffusion bonding, with Ti-metal foil as a joining interlayer. Samples were joined at 1400 °C, under applied pressures of either 10 or 30 MPa, and with different atmospheres (argon, Ar, vs. vacuum). It was demonstrated that the shear strength of the joints increased with an increase in the applied joining pressure. The joining atmosphere also affected on both the microstructure and shear strength of the SiC joints. The composition and microstructure of the interlayer were examined to understand the mechanism. As a result, a SiC-SiC joining with a good mechanical performance could be achieved under an Ar environment, which in turn could provide a cost-effective approach and greatly widen the applications of SiC ceramic components with complex shape.  相似文献   
7.
This work focuses on identifying the rate-determining step of oxygen transport through La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes with symmetric and asymmetric architectures. The best oxygen semipermeation fluxes are 3.4 10−3 mol. m-2.s-1 and 6.3 10−3 mol. m-2.s-1 at 900 °C for the symmetric membrane and asymmetric membrane with a modified surface. The asymmetric membrane with a modified surface leads to an increase of approximately 7 times the oxygen flux compared to that obtained with the La0.5Sr0.5Fe0.7Ga0.3O3-δ dense membrane without surface modification. This work also shows that the oxygen flux is mainly governed by gaseous oxygen diffusion through the porous support of asymmetric La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes.  相似文献   
8.
Understanding energy transport in metal halide perovskites is essential to effectively guide further optimization of materials and device designs. However, difficulties to disentangle charge carrier diffusion, photon recycling, and photon transport have led to contradicting reports and uncertainty regarding which mechanism dominates. In this study, monocrystalline CsPbBr3 nanowires serve as 1D model systems to help unravel the respective contribution of energy transport processes in metal-halide perovskites. Spatially, temporally, and spectrally resolved photoluminescence (PL) microscopy reveals characteristic signatures of each transport mechanism from which a robust model describing the PL signal accounting for carrier diffusion, photon propagation, and photon recycling is developed. For the investigated CsPbBr3 nanowires, an ambipolar carrier mobility of μ = 35 cm2 V−1 s−1 is determined, and is found that charge carrier diffusion dominates the energy transport process over photon recycling. Moreover, the general applicability of the developed model is demonstrated on different perovskite compounds by applying it to data provided in previous related reports, from which clarity is gained as to why conflicting reports exist. These findings, therefore, serve as a useful tool to assist future studies aimed at characterizing energy transport mechanisms in semiconductor nanowires using PL.  相似文献   
9.
针对现有基于视频监控的人流量统计方案成本高、算法复杂且不利于个人隐私保护的局限性,利用毫米波雷达体积小、成本低、分辨率高的特点,提出了一种基于双时间点检测的人流量监测方法。该方法先获取人体目标散射点位置和多普勒频移信息来构成点云数据,然后根据多普勒频移正负来判断人体的运动方向,并筛选具有高多普勒频移值的点云数据以降低干扰点对聚类结果的影响;在双时间点对特定区域内人员数量进行统计,并根据双时间点之间所获取的点云数据聚类结果对所统计人员数据进行修正。实验结果表明,该方法能够用匿名的方式以较高的正确率统计人员进出。  相似文献   
10.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号