首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4527篇
  免费   82篇
  国内免费   156篇
电工技术   64篇
综合类   82篇
化学工业   1099篇
金属工艺   288篇
机械仪表   276篇
建筑科学   19篇
矿业工程   41篇
能源动力   397篇
轻工业   24篇
水利工程   1篇
石油天然气   7篇
武器工业   12篇
无线电   798篇
一般工业技术   1215篇
冶金工业   153篇
原子能技术   96篇
自动化技术   193篇
  2024年   1篇
  2023年   47篇
  2022年   78篇
  2021年   88篇
  2020年   93篇
  2019年   96篇
  2018年   80篇
  2017年   119篇
  2016年   66篇
  2015年   70篇
  2014年   171篇
  2013年   196篇
  2012年   210篇
  2011年   422篇
  2010年   249篇
  2009年   285篇
  2008年   305篇
  2007年   279篇
  2006年   258篇
  2005年   180篇
  2004年   166篇
  2003年   174篇
  2002年   146篇
  2001年   115篇
  2000年   105篇
  1999年   115篇
  1998年   119篇
  1997年   101篇
  1996年   85篇
  1995年   84篇
  1994年   68篇
  1993年   39篇
  1992年   30篇
  1991年   20篇
  1990年   19篇
  1989年   25篇
  1988年   27篇
  1987年   8篇
  1986年   4篇
  1985年   4篇
  1984年   5篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
排序方式: 共有4765条查询结果,搜索用时 15 毫秒
1.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
2.
In our previous work, phosphorylated chitosan was modified through polymer blending with poly(vinyl alcohol) (PVA) polymer to produce N-methylene phosphonic chitosan/poly(vinyl alcohol) (NMPC/PVA) composite membranes. The aim of this work is to further investigate the effects of a propylammonium nitrate (PAN) ionic liquid and/or silicon dioxide (SiO2) filler on the morphology and physical properties of NMPC/PVA composite membranes. The temperature-dependent ionic conductivity of the composite membranes with various ionic liquid and filler compositions was studied by varying the loading of PAN ionic liquid and SiO2-PAN filler in the range of 5–20 wt%. As the loading of PAN ionic liquid increased in the NMPC/PVA membrane matrix, the ionic conductivity value also increased with the highest value of 0.53 × 10?3 S cm?1 at 25 °C and increased to 1.54 × 10?3 S cm?1 at 100 °C with 20 wt% PAN. The NMPC/PVA-PAN (20 wt%) composite membrane also exhibited the highest water uptake and ion exchange capacity, with values of 60.5% and 0.60 mequiv g?1, respectively. In addition, in the single-cell performance test, the NMPC/PVA-PAN (20 wt%) composite membrane displayed a maximum power density, which was increased by approximately 14% compared to the NMPC/PVA composite membrane with 5 wt% SiO2-PAN. This work demonstrated that modified NMPC/PVA composite membranes with ionic liquid PAN and/or SiO2 filler showed enhanced performance compared with unmodified NMPC/PVA composite membranes for proton exchange membrane fuel cells.  相似文献   
3.
《Ceramics International》2021,47(24):34810-34819
This study evaluated the effects of different Z-values on the physical, chemical, and biological properties of β-SiAlON ceramics. Increasing the Z-value of the β-Si3N4 solid solution's main phase resulted in the replacement of Si–N bonds with Al–O bonds. The number of columnar crystals decreased, bulk density increased, and porosity decreased, thus transforming the fine-particle microstructure of β-Si3N4 into the columnar structure of β-SiAlON. The compressive strength increased, which facilitated sintering at 1500 °C without sintering auxiliaries. H+ and OH ions in deionized water broke the covalent bonds on the β-SiAlON surface, thereby forming new Si–OH, Al–OH, and N–H bonds on the β-SiAlON surface and producing SiO44−, AlO2, and NH4+ groups in the solution. Increasing the soaking time changed the compositions of ionized H+ and OH ions, thus increasing the pH. MC3T3-E1 cells were cultured on the β-SiAlON surface, and it was observed that the increase in the Z-value of β-SiAlON had no influence on cell adhesion and spreading, but it may slightly suppress cell proliferation at high Z-values. At low Z-values, the low AlO2 concentration helps promote osteogenic differentiation and mineralized nodule formation. Thus, β-SiAlON ceramics possess excellent physical, chemical, and biological properties and are considered excellent bone-repairing materials.  相似文献   
4.
《Ceramics International》2021,47(23):33070-33077
In this work, a number of precursors with 1:1 silicon to carbon atoms ratio and various carbon atom distributions were synthesized and pyrolyzed in order to obtain silicon oxycarbide based materials. The different carbon atom distributions were obtained using both simple monomers with only one silicon atom, as well as large monomers containing either four or sixteen silicon atoms with predefined carbon atom positions. The silicon oxycarbide based materials were investigated using IR, XRD, 29Si MAS NMR and elemental analysis after annealing at various temperatures, as well as TG. The research shows that carbon atom distribution has great impact on the structure of final material and can be used to tailor the material for its projected uses.  相似文献   
5.
《Ceramics International》2021,47(19):27050-27057
Emulsion processed polymer derived ceramic (PDC) nanobeads are used for Methylene Blue dye removal from aqueous solutions. The PDC nanobeads, produced at 600 °C and 1200 °C pyrolysis, are subsequently coated with titania (anatase). Titania-coated nanobeads show less than 35%, i.e., limited dye adsorption capability in dark. Instead, enhanced total removal efficiency (∼97%) is obtained when the initial adsorption is succeeded by photodegradation under UV. Direct reusability tests show that even after the third cycle, very high regeneration efficiencies being above 92% are observed for titania-coated nanobeads.  相似文献   
6.
In porous reaction bonded silicon nitride, whiskers normally grow in globular clusters as the dominant morphology and deteriorate the pore interconnectivity. However, the ceramic microstructure was significantly transformed with the addition of MgO; specifically, the morphology was modified to a combination of matte and hexagonal grains. Microstructural observation along with thermodynamic studies suggest that MgO interfered with the presence and nitridation of SiO(g). Consequently, rather than being involved in the whiskers’ formation, surface silica instead reacted with volatile MgO to form intermediate products. Through these reactions, whisker formation was blocked, and a porous interconnected structure formed which was confirmed by 3D tomography. After heat-treatment at 1700 °C, β-Si3N4 crystallized in a glassy matrix containing magnesium. Resulting samples had an open-pore structure with porosity of 74–84 vol. %, and density of 0.48-0.75 g.cm?3. Combination of high porosity and pore size of <40 μm led to compressive strengths of 1.1–1.6 MPa.  相似文献   
7.
SiC based composites filled with graphene nano-platelets (GNPs) or graphene oxide (GO) prepared by rapid hot-pressing exhibit sufficient electrical conductivity for their machinability by wire electro-discharge machining (WEDM). Composites microstructure anisotropy caused by graphene alignment as a consequence of rapid hot pressing was confirmed by measuring of electrical conductivity and thermal diffusivity. Electrical conductivity increased significantly with increased weight fraction of graphene in both measured directions. Highest value of 2031 S/m was obtained for composites with 15 wt. % of GNPs in parallel direction and only 1246 S/m in perpendicular direction to aligned GNPs. Thermal diffusivity is 63.3 mm2/s in parallel and only 23.3 mm2/s in perpendicular direction. The increase of the electrical conductivity has resulted in successful WEDM. The MRR was almost doubled when the filler concentration increased from 5 wt. % GNPs/GO to 15 wt. % GNPs. At the same time, the surface roughness decreased.  相似文献   
8.
Pressure-assisted infiltration was used to synthesize SiC/Al 6061 composites containing high weight percentages of SiC. A combination of PEG and glass water was used to fabricate SiC preforms and the effect of the presence of glass water on the microstructure and mechanical properties of the preforms was evaluated by performing compression tests on the preforms. Also, the compressive strength and the hardness of the SiC/Al composites were investigated. The results revealed that the glass water improved the compressive strength of the preforms by about five times. The microstructural characterization of the composites showed that the penetration of the aluminum melt into the preforms was completed and almost no porosity could be seen in the microstructures of the composites. Moreover, the composite containing 75 wt% SiC exhibited the highest compressive strength as well as the maximum hardness. The results of the wear tests showed that increasing the SiC content reduces the wear rate so that the Al-75 wt% SiC composite has a lower wear rate and a lower coefficient of friction than those of Al-67 wt% SiC composite. This indicated higher wear resistance in these composites than the Al alloy due to the formation of a tribological layer on the surface of the composites.  相似文献   
9.
为了研究纳米抛光碳化硅时压力变化对表面的影响规律,建立了金刚石磨粒纳米抛光碳化硅的分子动力学模型,数值模拟了纳米尺度下的碳化硅抛光过程,具体分析了抛光压力线性增大过程中的配位数为1至6的原子数量的变化规律,揭示了线性改变抛光压力对被加工表面相变的影响规律,仿真结果表明:压力是诱导碳化硅相变的主要因素,当抛光压力增大时,发生相变的原子数增多,碳化硅的相变深度增加,其中配位数为1、2和4的原子数减少,配位数为3、5和6的原子数增多。  相似文献   
10.
《Ceramics International》2021,47(20):28260-28267
Piezoelectric materials are an indispensable part of modern life. Yet the existing environmental issues with conventional lead-based piezoelectrics has motivated scientist to develop novel substitutes including lead-free piezoelectric polymer composites. Following this path, the present research has focused on the fabrication of ternary composites of Polyvinylidene fluoride (PVDF)/Potassium Sodium Niobate (KNN)/nano-Silicon carbide (SiC) via hot compression molding and studying the effect of additives on the PVDF structure and the electrical properties of the composite. The obtained scanning electron micrographs and density measurements showed that the fabrication method provided dense samples. The activated polarization phenomena in the prepared samples enhanced dielectric permittivity and dielectric loss at a constant frequency with increasing KNN and SiC contents. Besides the expected dipole polarization, the presence of interfaces in the composites gave rise to the Maxwell–Wagner–Sillars effect and its corresponding polarization phenomenon. The semiconductive nature of SiC also promoted space charge polarization. However, these properties were frequency-dependent because the first two polarization mechanisms are deactivated at high frequencies. XRD patterns showed that SiC addition can alter the primary crystalline structure of PVDF and promote β-phase formation in the poled samples. Piezoelectric measurements confirmed the significant role of SiC addition to PVDF-KNN composites. The most significant increase in the piezoelectric properties was observed in PVDF-60KNN-1SiC, with a 183% increase in d33 value. The PVDF-80KNN-1SiC had the highest d33 value of 30.5 pC/N. It also had the best piezoelectric voltage coefficient and hence the highest figure of merit. Higher SiC contents restrict the efficiency of poling by forming a conductive path across the sample which would deteriorate the piezoelectric performance of the material. The present findings show that PVDF-KNN-SiC composites can be considered as a potential flexible piezoelectric material for future applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号