首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39808篇
  免费   3713篇
  国内免费   3059篇
电工技术   2504篇
技术理论   13篇
综合类   4526篇
化学工业   4824篇
金属工艺   2431篇
机械仪表   1325篇
建筑科学   3737篇
矿业工程   1420篇
能源动力   1406篇
轻工业   3147篇
水利工程   1222篇
石油天然气   2334篇
武器工业   212篇
无线电   3255篇
一般工业技术   5919篇
冶金工业   1626篇
原子能技术   315篇
自动化技术   6364篇
  2024年   66篇
  2023年   482篇
  2022年   740篇
  2021年   1108篇
  2020年   1176篇
  2019年   1059篇
  2018年   946篇
  2017年   1183篇
  2016年   1304篇
  2015年   1433篇
  2014年   2196篇
  2013年   2388篇
  2012年   2469篇
  2011年   2995篇
  2010年   2416篇
  2009年   2496篇
  2008年   2499篇
  2007年   2805篇
  2006年   2478篇
  2005年   2148篇
  2004年   1959篇
  2003年   1605篇
  2002年   1418篇
  2001年   1056篇
  2000年   993篇
  1999年   803篇
  1998年   682篇
  1997年   549篇
  1996年   496篇
  1995年   415篇
  1994年   383篇
  1993年   271篇
  1992年   272篇
  1991年   240篇
  1990年   202篇
  1989年   154篇
  1988年   107篇
  1987年   64篇
  1986年   60篇
  1985年   82篇
  1984年   85篇
  1983年   51篇
  1982年   43篇
  1981年   35篇
  1980年   21篇
  1979年   24篇
  1978年   16篇
  1977年   23篇
  1975年   14篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Two-dimensional rotating detonation waves (RDWs) with separate injections of hydrogen and air are simulated using the Navier–Stokes equations together with a detailed chemical mechanism. The effects of injection stagnation temperature and slot width on the detonation propagation patterns are investigated. Results find that extremely high temperatures can lead to a chaotic mode in which detonation waves are generated and extinguished randomly. Increasing the slot width can reduce the number of detonation waves and finally trigger detonation quenching at a low injection stagnation temperature. But increasing the slot width can change the RDW propagation pattern from a chaotic to a stable mode under high injection temperature. Furthermore, the kinetic parameter τ (representing the chemical reactivity of the mixture) and the kinematic parameter α (representing the mixing efficiency of hydrogen and oxygen) are introduced to distinguish the RDW propagation patterns.  相似文献   
2.
Hydrogen transportation by pipelines gradually becomes a critical engineering route in the worldwide adaptation of hydrogen as a form of clean energy. However, due to the hydrogen embrittlement effect, the compatibility of linepipe steels and associated welds with hydrogen is a major concern when designing hydrogen-carrying pipelines. When hydrogen enters the steels, their ductility, fracture resistance, and fatigue properties can be adversely altered. This paper reviews the status of several demonstration projects for natural gas-hydrogen blending and pure hydrogen transportation, the pipeline materials used and their operating parameters. This paper also compares the current standards of materials specifications for hydrogen pipeline systems from different parts of the world. The hydrogen compatibility and tolerance of varying grades of linepipe steels and the relevant testing methods for assessing the compatibility are then discussed, and the conservatism or the inadequacies of the test conditions of the current standards are pointed out for future improvement.  相似文献   
3.
4.
《Ceramics International》2022,48(10):14349-14359
The influence of heat-treatment temperatures (700 °C, 900°C, 1200 °C) on the phase, physical properties, crystallization rate, and in vitro properties of the solution combustion synthesized silicon-doped calcium phosphates (CaPs) were investigated. The thermodynamic aspects (enthalpy, entropy, and free energy) of the synthesis process and the crystallographic properties of the final samples were first predicted and then confirmed using density functional theory (DFT). Results demonstrated that the crystallization rate was controlled by the fuel(s) type (glycine, citric acid, and urea) and the amounts of Si4+ ions (0, 0.1, 0.4 mol). The highest calculated crystallization rate values of the un-doped, 0.1, and 0.4 mol Si-doped samples were 64%, 22%, 38%, respectively. The obtained results from the DFT simulation revealed that crystal growth in the direction of c-axis of hydroxyapatite (HAp) structure could change the stability of (001) surface of (HAp). Also, the computational data confirmed the adsorption of Si–OH groups on the (001) surface of HAp during the SCS process with an adsorption energy of 1.53 eV. AFM results in line with DFT simulation showed that the observed change in the surface roughness of Si-doped CaPs from 2 to 8 nm could be related to the doping of Si4+ ions onto the surface of CaPs. Besides, the theoretical and experimental investigation showed that crystal growth and doping of Si4+ ions could decrease the activation energy of oxygen reduction reaction (ORR). Furthermore, the results showed that the crystallized HAp structure could have great potential to efficiently reduce oxidative stress in human body.  相似文献   
5.
《Journal of dairy science》2022,105(10):8130-8142
Residual feed intake (RFI) is a measurement of the difference between actual and predicted feed intake when adjusted for energy sinks; more efficient cows eat less than predicted (low RFI) and inefficient cows eat more than predicted (high RFI). Data evaluating the relationship between RFI and feeding behaviors (FB) are limited in dairy cattle; therefore, the objective of this study was to determine daily and temporal FB in mid-lactation Holstein cows across a range of RFI values. Mid-lactation Holstein cows (n = 592 multiparous; 304 primiparous) were enrolled in 17 cohorts at 97 ± 26 d in milk (± standard deviation), and all cows within a cohort were fed a common diet using automated feeding bins. Cow RFI was calculated as the difference between predicted and observed dry matter intake (DMI) after accounting for parity, days in milk, milk energy, metabolic body weight and change, and experiment. The associations between RFI and FB at the level of meals and daily totals were evaluated using mixed models with the fixed effect of RFI and the random effects of cow and cohort. Daily temporal FB analyses were conducted using 2-h blocks and analyzed using mixed models with the fixed effects of RFI, time, RFI × time, and cohort, and the random effect of cow (cohort). There was a positive linear association between RFI and DMI in multiparous cows and a positive quadratic relationship in primiparous cows, where the rate of increase in DMI was less at higher RFI. Eating rate, DMI per meal, and size of the largest daily meal were positively associated with RFI. Daily temporal analysis of FB revealed an interaction between RFI and time for eating rate in multiparous and primiparous cows. The eating rate increased with greater RFI at 11 of 12 time points throughout the day, and eating rate differed across RFI between multiple time points. There tended to be an interaction between RFI and time for eating time and bin visits in multiparous cows but not primiparous cows. Overall, there was a time effect for all FB variables, where DMI, eating time and rate, and bin visits were greatest after the initial daily feeding at 1200 h, increased slightly after each milking, and reached a nadir at 0600 h (6 h before feeding). Considering the relationship between RFI and eating rate, additional efforts to determine cost-effective methods of quantifying eating rate in group-housed dairy cows is warranted. Further investigation is also warranted to determine if management strategies to alter FB, especially eating rate, can be effective in increasing feed efficiency in lactating dairy cattle.  相似文献   
6.
The exploration of the high thermal stability near-infrared (NIR) phosphors is significantly crucial for the development of plant lighting. However, NIR phosphors suffer from the poor chemical and thermal stability, which severely limits their long-term operation. Here, the successful improvement of luminous intensity (149.5%) and thermal stability at 423 K of Zn3Ga2GeO8 (ZGGO): Cr3+ phosphors is achieved for the introduction of Al3+ ions into the host. The release of carriers in deep traps inhibits the emission loss for the thermal disturbance. Furthermore, an NIR light emitting diodes (LEDs) lamp is explored by combining the optimized Zn3Ga1.1675Al0.8GeO8: 0.0325Cr3+ phosphors with a commercial 460 nm blue chip, and the emission band can match well with the absorption bands of photosynthetic pigments and the phytochrome (PR and PFR) of plants. The explored LEDs lamp further determines the growth and the pheromone content of the involved plants for the participation of the NIR emission originated from Cr3+ ions. Our work provides a promising NIR lamp as plant light with improved thermal stability for long-term operation.  相似文献   
7.
8.
Molecular mechanisms and process kinetics of crystallizing concomitant polymorphs remain poorly understood. Solvent-mediated phase transformation and concomitant crystallization are difficult to be distinguished in practice, as multiple forms can be detected at the same time. Herein, we developed a population balance model to simulate a concomitant crystallization process of two polymorphs of tolfenamic acid. Our kinetic modeling aims to understand concomitant crystallization and help guide form selection of such a molecular system. Crystallization kinetics of ethanolic solutions were uncovered from induction time measurements, as well as seeded and unseeded crystallization experiments. Experimental and simulation results demonstrate that the stable form I crystallizes concomitantly with the metastable form II. The faster growing form II results in an intermediate decline in the composition of form I in crystallized samples, a characteristic feature of the concomitantly crystallized system. A four-quadrant scheme of attainable polymorph outcome was simulated under various crystallization conditions.  相似文献   
9.
Alumina platelets were arranged horizontally in submicron alumina particles by shear force in the flow of slurries during casting. The obtained alumina green bodies with platelets were pressureless-sintered in vacuum, producing ceramics with thoroughly oriented grains and high transmittance. The effects of sintering parameters on the densification, microstructure evolution, and orientation degree of alumina ceramics were investigated and discussed. The results showed that the densification, grain size, orientation degree, and in-line transmittance were increased with increasing sintering temperature. The enhancement of orientation degree was mainly coherent with grain growth. The grain-oriented samples exhibited a much higher in-line transmittance (at 600 nm) of 61 % than that of the grain random sample (29 %). Moreover, the transmission remained a high level in the ultraviolet range (<300 nm).  相似文献   
10.
In this work, 0.5TRPO•0.5Gd2Zr2O7 ceramic with an average grain size of only ∼15 nm was prepared by a high pressure (5 GPa/520 °C) sintering method. Phase evolutions and microstructure changes of the as-fabricated super nano and micron-grained ceramics under a high-dose displacement damage induced by 300 keV Kr2+ ions were investigated. The results show that the super nano-grained ceramic has low degree of amorphization, obvious grain growth (2–3 times in grain size) and big Kr bubbles (10–68 nm) formation after irradiation. The micron-grained ceramic was severely amorphized after irradiation and many microcracks were formed parallel to its surface. The formation mechanism of Kr bubbles in the super nano-grained ceramic is on account of grain boundary diffusion and migration induced by the accumulation of the injecting Kr ions and irradiation defects. Nevertheless, microcracks formed in the micron-grained sample are caused by the accumulation of Kr atoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号