首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41370篇
  免费   5085篇
  国内免费   3003篇
电工技术   998篇
综合类   2242篇
化学工业   4424篇
金属工艺   6374篇
机械仪表   3190篇
建筑科学   457篇
矿业工程   454篇
能源动力   1147篇
轻工业   1023篇
水利工程   484篇
石油天然气   740篇
武器工业   549篇
无线电   16395篇
一般工业技术   8076篇
冶金工业   765篇
原子能技术   941篇
自动化技术   1199篇
  2024年   89篇
  2023年   777篇
  2022年   976篇
  2021年   1351篇
  2020年   1335篇
  2019年   1211篇
  2018年   1144篇
  2017年   1534篇
  2016年   1464篇
  2015年   1540篇
  2014年   2054篇
  2013年   2299篇
  2012年   2762篇
  2011年   2896篇
  2010年   2232篇
  2009年   2269篇
  2008年   2407篇
  2007年   2828篇
  2006年   2640篇
  2005年   2214篇
  2004年   2038篇
  2003年   1786篇
  2002年   1468篇
  2001年   1281篇
  2000年   1069篇
  1999年   886篇
  1998年   777篇
  1997年   708篇
  1996年   656篇
  1995年   597篇
  1994年   530篇
  1993年   436篇
  1992年   340篇
  1991年   305篇
  1990年   211篇
  1989年   105篇
  1988年   77篇
  1987年   31篇
  1986年   27篇
  1985年   26篇
  1984年   19篇
  1983年   12篇
  1982年   10篇
  1981年   8篇
  1980年   7篇
  1979年   4篇
  1978年   4篇
  1976年   3篇
  1975年   5篇
  1959年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
系统阐述了基准平面垂直断面法在爆破漏斗试验中测量爆破漏斗体积的基本原理,并将隧道激光断面仪应用于金厂河矿1 750 m水平15#采场底部切割巷道爆破漏斗试验爆破漏斗体积测量中。通过与传统体重法等计算法所得漏斗体积分析比较,结果表明基于隧道激光断面仪与3D Mine软件分析的基准平面垂直断面法实用性强、操作方便、结果直观可靠,达到试验预期目的。  相似文献   
2.
The ohmic resistance in solid oxide fuel cells (SOFCs) mainly comes from the electrolyte, which can be reduced by developing novel electrolyte materials with higher ionic conductivity and/or fabricating thin-film electrolytes. Among various kinds of thin-film fabrication technology, the physical vapor deposition (PVD) method can reduce the electrolyte thickness to a few micrometers and mitigate the issues associated with high-temperature sintering, which is necessary for wet ceramic methods. This review summarizes recent development progress in thin-film electrolytes fabricated by the PVD method, especially pulsed laser deposition (PLD) and magnetron sputtering. At first, the importance of the substrate surface morphology for the quality of the film is emphasized. After that, the fabrication of thin-film doped-zirconia and doped-ceria electrolytes is presented, then we provide a brief summary of the works on other types of electrolytes prepared by PVD. Finally, we have come to the summary and made perspectives.  相似文献   
3.
林加富 《玻璃》2022,49(2):53-57
双玻光伏组件以其抗PID性强、防隐裂、防水汽透过、抗蜗牛纹、可靠性优异、轻量化等诸多优点,在晶硅太阳能组件市占比逐步提高。双玻光伏组件用背板玻璃一般需要预留出线孔,光伏背板玻璃的出线孔主要有两种打孔方式:金钢钻上下同步钻孔的模式和激光打孔。激光打孔以其易维护、可异形孔加工、效率高、生产成本低等优势得到各大玻璃厂的认可。通过分析在实际生产中激光打孔出现的打孔缺陷问题,提出了改善措施,有助于工厂的降本增效。  相似文献   
4.
The introduction of catalyst on anode of solid oxide fuel cell (SOFC) has been an effective way to alleviate the carbon deposition when utilizing biogas as the fuel. A series of La0.6Sr0.4Co1-xNixO3-δ (x = 0, 0.2, 0.4, 0.6, 0.8) oxides are synthesized by sol-gel method and used as catalysts precursors for biogas dry reforming. The phase structure of La0.6Sr0.4Co1-xNixO3-δ oxides before and after reduction are characterized by X-ray diffraction (XRD). The texture properties, carbon deposition, CH4 and CO2 conversion rate of La0.6Sr0.4Co1-xNixO3-δ catalysts are evaluated and compared. The peak power density of 739 mW cm?2 is obtained by a commercial SOFC with La0.6Sr0.4Co0.4Ni0.6O3-δ catalyst at 850 °C when using a mixture of CH4: CO2 = 2:1 as fuel. This shows a great improvement from the cell without catalyst for internal dry reforming, which is attributed to the formation of NiCo alloy active species after reduction in H2 atmosphere. The results indicate the benefits of inhibiting the carbon deposition on Ni-based anode through introducing the La0.6Sr0.4Co0.4Ni0.6O3-δ catalyst precursor. Additionally, the dry reforming technology will also help to convert part of the exhaust heat into chemical energy and improve the efficiency of SOFC system with biogas fuel.  相似文献   
5.
Food- and waterborne viruses, such as human norovirus, hepatitis A virus, hepatitis E virus, rotaviruses, astroviruses, adenoviruses, and enteroviruses, are major contributors to all foodborne illnesses. Their small size, structure, and ability to clump and attach to inanimate surfaces make viruses challenging to reduce or eliminate, especially in the presence of inorganic or organic soils. Besides traditional wet and dry methods of disinfection using chemicals and heat, emerging physical nonthermal decontamination techniques (irradiation, ultraviolet, pulsed light, high hydrostatic pressure, cold atmospheric plasma, and pulsed electric field), novel virucidal surfaces, and bioactive compounds are examined for their potential to inactivate viruses on the surfaces of foods or food contact surfaces (tools, equipment, hands, etc.). Every disinfection technique is discussed based on its efficiency against viruses, specific advantages and disadvantages, and limitations. Structure, genomic organization, and molecular biology of different virus strains are reviewed, as they are key in determining these techniques effectiveness in controlling all or specific foodborne viruses. Selecting suitable viral decontamination techniques requires that their antiviral mechanism of action and ability to reduce virus infectivity must be taken into consideration. Furthermore, details about critical treatments parameters essential to control foodborne viruses in a food production environment are discussed, as they are also determinative in defining best disinfection and hygiene practices preventing viral infection after consuming a food product.  相似文献   
6.
《Ceramics International》2022,48(24):36860-36870
For the advantages of high-temperature resistance, corrosion resistance and ultra-high hardness, SiCf/SiC composite is becoming a preferred material for manufacturing aero-engine parts. However, the anisotropy and heterogeneity bring great challenges to the processing technology. In this study, a nanosecond pulsed laser is applied to process SiCf/SiC composite, where the influence of the scanning speed and laser scanning direction to the SiC fibers on the morphology of ablated grooves is investigated. The surface characteristics after ablation and the involved chemical reaction of SiCf/SiC are explored. The results show that the increased laser scanning speed, accompanied by the decreasing spot overlap rate, leads to the less accumulation of energy on the material surface, so the ablation effect drops. In addition, for the anisotropy of the SiCf/SiC material, the obtained surface characteristics are closely dependent on the laser scanning direction to the SiC fibers, resulting in different groove morphology. The element composition and phase analysis of the machined surface indicate that the main deposited product is SiO2 and the carbon substance. The results can provide preliminary technical support for controlling the machining quality of ceramic matrix composites.  相似文献   
7.
Morphology of carbon nanofibers significantly effects Pt nanoparticles dispersion and specific interaction with the support, which is an important aspect in the fuel cell performance of the electrocatalysts. This study emphasizes, the defects creation and structural evolution comprised due to N–F co-doping on graphitic carbon nanofibers (GNFs) of different morphologies, viz. GNF-linearly aligned platelets (L), antlers (A), herringbone (H), and their specific interaction with Pt nanoparticle in enhancing the oxygen reduction reaction (ORR). GNFs–NF–Pt catalysts exhibit better ORR electrocatalytic activity, superior durability that is solely ascribed to the morphological evolution and the doped N–F heteroatoms, prompting the charge density variations in the resultant carbon fiber matrices. Amongst, H–NF–Pt catalyst performed outstanding ORR activity with exceptional electrochemical stability, which shows only 20 mV loss in the half-wave potential whilst 100 mV loss for Pt/C catalyst on 20,000 potential cycling. The PEMFC comprising H–NF–Pt as cathode catalyst with minimum loading of 0.10 mg cm?2, delivers power density of 0.942 W cm?2 at current density of 2.50 A cm?2 without backpressures in H2–O2 feeds. The H–NF–Pt catalyst owing to its hierarchical architectures, performs well in PEMFC at the minimized catalyst loading with outstanding stability that can significantly decrease total price for the fuel cell.  相似文献   
8.
High-efficiency Yb:Y2O3 laser ceramics were fabricated using the vacuum-sintering plus hot isostatic pressing (HIP) without sintering additives. High-purity well-dispersed nanocrystalline Yb:Y2O3 powder was synthesized using a modified co-precipitation method in-house. The green bodies were first vacuum sintered at a temperature as low as 1430°C and then HIPed at 1450°C. Finally, the samples were air annealed at 800°C for 10 h. Although no sintering aids were used, full density of the samples with excellent optical homogeneity and an inline transmission of 80% at 400 nm could be obtained. Moreover, photodarkening phenomenon was not detected in the ceramics. Preliminary laser experiment with the fabricated ceramics in a two-mirror cavity has demonstrated 32 W continuous-wave (CW) output at ∼1077 nm with an optical-to-optical conversion efficiency of 58.2%. To the best of our knowledge, this is so far the highest CW output power and optical-to-optical conversion efficiency achieved with the Yb3+-doped sesquioxide ceramics in a simple two-mirror cavity.  相似文献   
9.
《Ceramics International》2021,47(22):31590-31596
In this study, the high ferroelectric hysteresis loss of (Pb0·93La0.07)(Zr0·82Ti0.18)O3 (PLZT 7/82/18) antiferroelectric (AFE) ceramics was reduced by employing a combinatorial approach of Mn acceptor doping followed by thick film fabrication via an aerosol deposition (AD) process. The grains of the as-deposited PLZT 7/82/18 AFE AD thick films were grown by thermal annealing at 550 °C to enhance their electrical properties. Investigation of the electrical properties revealed that Mn-doping results in improved dielectric and ferroelectric properties, increased dielectric breakdown strength (DBS), and energy-storage properties. The Mn-doped PLZT AFE AD films possess a frequency-independent high dielectric constant (εr ≈ 660) with low dielectric loss (tan δ ≈ 0.0146), making them suitable candidates for storage capacitor applications. The bipolar and unipolar polarization vs. electric field (P-E) hysteresis loops of PLZT 7/82/18 AFE AD thick films were found to be slimmer than those of their bulk form (double hysteresis) with significantly reduced ferroelectric hysteresis loss, which is attributed to the AD-induced mixed grain structure. The Mn-doped PLZT 7/82/18 AFE AD thick films exhibited a low remnant polarization (Pr ≈ 9.22 μC/cm2) at a high applied electric field (~2750 kV/cm). The energy-storage density and energy efficiency of the Mn-doped PLZT AFE AD thick films were calculated from unipolar P-E hysteresis loops and found to be ~38.33 J/cm3 and ~74%, respectively.  相似文献   
10.
Within the reactive oxygen species (ROS) generated by cellular metabolisms, hydroxyl radicals (HO) play an important role, being the most aggressive towards biomolecules. The reactions of HO with methionine residues (Met) in peptides and proteins have been intensively studied, but some fundamental aspects remain unsolved. In the present study we examined the biomimetic model made of Ac-Met-OMe, as the simplest model peptide backbone, and of HO generated by ionizing radiation in aqueous solutions under anoxic conditions. We performed the identification and quantification of transient species by pulse radiolysis and of final products by LC-MS and high-resolution MS/MS after γ-radiolysis. By parallel photochemical experiments, using 3-carboxybenzophenone (CB) triplet with the model peptide, we compared the outcomes in terms of short-lived intermediates and stable product identification. The result is a detailed mechanistic scheme of Met oxidation by HO, and by CB triplets allowed for assigning transient species to the pathways of products formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号