首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5426篇
  免费   577篇
  国内免费   191篇
电工技术   76篇
综合类   398篇
化学工业   1487篇
金属工艺   218篇
机械仪表   88篇
建筑科学   308篇
矿业工程   233篇
能源动力   49篇
轻工业   1683篇
水利工程   161篇
石油天然气   44篇
武器工业   11篇
无线电   319篇
一般工业技术   464篇
冶金工业   504篇
原子能技术   30篇
自动化技术   121篇
  2024年   13篇
  2023年   140篇
  2022年   182篇
  2021年   223篇
  2020年   234篇
  2019年   194篇
  2018年   183篇
  2017年   177篇
  2016年   177篇
  2015年   197篇
  2014年   302篇
  2013年   310篇
  2012年   463篇
  2011年   461篇
  2010年   341篇
  2009年   331篇
  2008年   239篇
  2007年   361篇
  2006年   328篇
  2005年   241篇
  2004年   224篇
  2003年   162篇
  2002年   149篇
  2001年   98篇
  2000年   86篇
  1999年   58篇
  1998年   72篇
  1997年   51篇
  1996年   37篇
  1995年   45篇
  1994年   28篇
  1993年   22篇
  1992年   13篇
  1991年   8篇
  1990年   7篇
  1989年   8篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   1篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1955年   1篇
排序方式: 共有6194条查询结果,搜索用时 31 毫秒
1.
曹辉林 《金属矿山》2022,51(2):231-236
针对赤泥等固体废弃物对环境危害性大且利用率低等问题,以碱激发赤泥-矿渣基地聚物注浆材料为 研究对象,研究了不同掺量的聚羧酸(PA)减水剂、醛酮缩合物(AKC)减水剂和萘系(N)减水剂对材料凝结时间、流动 性及强度等的影响,并通过 XRD、傅里叶红外光谱及 SEM 等设备对减水剂的作用机理进行研究。 结果表明:减水剂增 强了材料的流动性但降低了材料的剪切应力;N 和 PA 减水剂能缩短材料的凝结时间,但 AKC 减水剂会延长材料的凝 结时间;N 和 AKC 减水剂能提高材料的强度,但 PA 减水剂会降低材料的强度;N 减水剂对材料的综合性能提升效果 更加明显,其最优掺量为 0. 7%;减水剂对赤泥-矿渣基地聚物性能提升的作用机理主要是促进地聚合物凝胶的形成。 研究成果为拓展赤泥在工程上的使用途径和效率提供了理论指导。  相似文献   
2.
以红心火龙果发酵液作为研究对象,通过优化喷雾干燥工艺制备粉剂,最佳工艺条件为:20%麦芽糊精,进液量:10mL/min,进口温度为120℃,出口温度为65℃;得到的粉剂为紫红色粉末,益生菌含量达到108cfu/g以上,口感酸甜。将发酵后的火龙果籽进行提取,得到的火龙果籽油含有丰富的十六酸、亚油酸和油酸。  相似文献   
3.
Pc-WLEDs are considered to play a spectacular role in future generation light sources in view of their outstanding energy efficiency. In this regard, Eu3+ activated BaY2ZnO5 phosphor was prepared and investigated by XRD, PL and SEM analyses. Rietveld refinement analysis was carried out to confirm the structure of the synthesized phosphor. The prepared phosphor shows an intense red emission around 627 nm under excitation by near UV light. The 5D0-7F2 transition intensity of the prepared phosphor is three times higher compared to the commercial (Y,Gd)BO3:Eu3+ red phosphor. The CIE colour coordinates of BaY2ZnO5:Eu3+ (9mol%) phosphor corresponds to be (0.6169, 0.3742) and it has a high 97.9 % colour purity. The obtained results reveal the utility of BaY2ZnO5:Eu3+ phosphor as an efficient red component in WLEDs, anti-counterfeiting and fingerprint detection applications.  相似文献   
4.
White light-emitting diodes (WLEDs) fabricated by single-phase full color emitting phosphor are an emerging solution for health lighting. The crystallographic site occupation of activators in a proper host lattice is crucial for sophisticated design of such phosphor. Here, we report a high quality white light-emitting phosphor Ba2Ca(BO3)2:Ce3+(K+),Eu2+,Mn2+ with spectral distribution covering whole visible region. Blue light emission originates from Ce3+ ions occupying preferentially Ba2+ site by controlling synthesis conditions. Green and red lights are obtained from Eu2+ occupying Ba2+ (and Ca2+) site and Mn2+ occupying Ca2+ site, respectively. In this triple-doped phosphor, strong red emission with a low concentration of Mn2+ is realized by the efficient energy transfer from Ce3+ and Eu2+ to Mn2+. Furthermore, high quality white light is accomplished by properly tuning the relative doping amount of Ce3+(K+)/Eu2+/Mn2+ based on efficient simultaneous energy transfer. The results indicate that Ba2Ca(BO3)2:Ce3+(K+),Eu2+,Mn2+ is a promising white light-emitting phosphor in WLEDs application.  相似文献   
5.
诱惑红是一种水溶性染料,近年来被用作农药沉积利用率测定的指示剂。诱惑红的检测方法为高效液相色谱法和分光光度法。高效液相色谱法需要专门的分析仪器,且价格昂贵,可见分光光度计法操作繁琐,试剂用量大,耗时长,均不适宜田间快速高效测定。笔者发展了诱惑红的酶标仪测定方法,简单高效,可批量检测多个样品,且准确度和精密度高,线性关系良好,514 nm检测波长下不受其他农药影响,并应用于玉米无人飞机喷雾场景下农药雾滴在玉米冠层的沉积利用率测定。  相似文献   
6.
《Ceramics International》2021,47(24):34721-34731
A series of Sr9Y(PO4)7:Eu3+ and Sr9Y(PO4)7:Eu3+, Gd3+ red-emitting phosphors were prepared via a high-temperature solid-state method, Gd3+ ion was co-doped in Sr9Y(PO4)7:Eu3+ as sensitizer to enhance the luminescence property. The X-ray diffraction results verify that the structure of the as-prepared samples is consistent with the standard Sr9Y(PO4)7 phase. All the Sr9Y(PO4)7:Eu3+ samples show both characteristic emission peaks at 594 nm and 614 nm under near-ultraviolet excitation of 394 nm. The co-doping of Gd3+ significantly improves the luminescence intensity of the Sr9Y(PO4)7:Eu3+ phosphors due to the crystal field environment effect and energy transfer of Gd3+→Eu3+ caused by the introduction of Gd3+, especially Sr9Y(PO4)7:0.11Eu3+, 0.05Gd3+, which emission intensity is higher than that of Sr9Y(PO4)7:0.11Eu3+ by 1.21 times. The color purity and lifetime of Sr9Y(PO4)7:0.11Eu3+, 0.05Gd3+ phosphor are 88.26% and 3.7615 ms, respectively. A w-LED device was packaged via coating the as-prepared phosphor on n-UV chip of 395 nm with commercial phosphors. These results exhibit that the Sr9Y(PO4)7:Eu3+, Gd3+ red-emitting phosphor can be used as a red component in the w-LEDs application.  相似文献   
7.
《Ceramics International》2022,48(21):31587-31597
The effects of the incorporation of a Bi3+ sensitizer on the phosphorescence properties and oxygen partial pressure sensitivity of the Eu3+ doped yttria stabilized zirconia (YSZ) phosphors were studied using a lifetime-based optical measurement system. Two series of YSZ: Eu phosphors were investigated in this work: Eu0.01BixY0.07-xZr0.92O1.96 substitutional series and Eu0.01BixY0.07Zr0.92-xO1.96-0.5x additive series. The phosphorescence intensity of the additive-series phosphors was enhanced by 47% excited at 405 nm with a Bi3+ concentration of 2 mol% due to the energy transfer between Bi3+ and Eu3+. In contrast, the phosphorescence intensity of the substitutional-series phosphors decreased as the Bi3+ concentration increased. The phosphorescence lifetimes for both series phosphors were highly sensitive to oxygen partial pressure at elevated temperatures. With increasing Bi3+ concentration, the oxygen sensitivities of both series were enhanced initially, which was related to the increment of concentration dependent non-radiative decay via cross-relaxation between Bi3+ and Eu3+. With 1 mol% Bi3+ doping, the oxygen sensitivity was enhanced by 28% and 12% for substitutional-series and additive-series phosphors, respectively. As the Bi3+ concentration further increased, the oxygen sensitivities of both series declined, which was attributed to the energy transfer between Bi3+, the formation of Bi3+ aggregates as well as the increase of the Eu3+ site symmetry. The results of this study not only provided valuable references for phosphor thermometry, but also offered new ideas for developing high-temperature non-contact pressure sensors.  相似文献   
8.
《Ceramics International》2019,45(15):18876-18886
Red-emitting Sr0.8Ca0.19AlSiN3:0.01Eu2+ phosphor with halide fluxes for use in the production of white light-emitting diodes (white LEDs) with high-colour rendering indices (CRIs) was prepared through the high-temperature solid-state method. Fluoride (NaF, SrF2, BaF2, CaF2, AlF3·3H2O and CeF3), chloride (NH4Cl, BaCl2, MgCl2, NaCl and LiCl) and composite fluxes (NaF + SrF2, SrF2+NH4Cl and NaF + NH4Cl) were applied in the phosphors. NaF, SrF2, NH4Cl and NaF + SrF2 fluxes had prominent effects on the characteristics of Sr0.8Ca0.19AlSiN3:0.01Eu2+ phosphors. Sr0.8Ca0.19AlSiN3:0.01Eu2+ phosphors with various powder morphologies can be obtained through the addition of fluxes, which are conducive for phosphor formation. The powder morphologies of phosphors incorporated with NaF + SrF2 were preferable to those of powders incorporated with other fluxes. This result indicated that the incorporation of NaF + SrF2 into Sr0.8Ca0.19AlSiN3:0.01Eu2+ yielded phosphors with high luminescent intensity and quantum efficiency, excellent thermal stability, narrow full widths at half-maximum (FWHM, 75.2 nm), uniform rod-like morphologies with large particle sizes (D50 = 16.99 μm) and good particle dispersion. White LEDs with high CRIs were obtained by combining prepared phosphors (NaF + SrF2 additive) with the commercial green-emitting phosphors Y3(Al,Ga)5O12:Ce3+ and (Sr,Ba)2SiO4:Eu2+. White LEDs with Y3(Al,Ga)5O12:Ce3+ and (Sr,Ba)2SiO4:Eu2+ phosphors had correlated colour temperatures (CCTs) of 3064 and 3023 K, respectively, and CRIs of 81.8 and 92.4, respectively. Therefore, NaF + SrF2 can be used as a favourable flux for the production of Sr0.8Ca0.19AlSiN3:0.01Eu2+.  相似文献   
9.
How to improve the sensitivity of the temperature-sensing luminescent materials is one of the most important objects currently. In this work, to obtain high sensitivity and learn the corresponding mechanism, the rare earth (RE) ions doped Y4.67Si3O13 (YS) phosphors were developed by solid-state reaction. The phase purity, structure, morphology and luminescence characteristics were evaluated by XRD, TEM, emission spectra, etc. The change of the optical bandgaps between the host and RE-doped phosphors was found, agreeing with the calculation results based on density-functional theory. The temperature-dependence of the upconversion (UC) luminescence revealed that a linear relationship exists between the fluorescence intensity ratio of Ho3+ and temperature. The theoretical resolution was evaluated. High absolute (0.083 K−1) and relative (3.53% K−1 at 293 K) sensitivities have been gained in the YS:1%Ho3+, 10%Yb3+. The effect of the Yb3+ doping concentration and pump power on the sensitivities was discussed. The pump-power–dependence of the UC luminescence indicated the main mechanism for high sensitivities in the YS:1%Ho3+, 10%Yb3+. Moreover, the decay-lifetime based temperature sensing was also evaluated. The above results imply that the present phosphors could be promising candidates for temperature sensors, and the proposed strategies are instructive in exploring other new temperature sensing luminescent materials.  相似文献   
10.
A series of Na5Y(MoO4)4-yAy:Dy3+ (A = WO42?, VO43?; y = 0–0.05) phosphors were synthesized by the combustion method. Some of the MoO42? sites were occupied by WO42? and VO43? anions, which enhanced the luminescence property of Dy3+-doped Na5Y(MoO4)4. XRD results show that the crystal structures of the samples were consistent with the standard Na5Y(MoO4)4 phase. Under excitation at 352 nm, the Na5Y(MoO4)4-yAy:Dy3+ phosphors exhibited a characteristic blue emission at 485 nm and a yellow emission at 577 nm, which originated from the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. White light can be achieved by combining these blue and yellow emissions. After replacing MoO42? with WO42? and VO43? anions in Na5Y(MoO4)4:Dy3+, the luminescence intensity of Dy3+ was significantly improved due to the crystal field effect. The results indicate that Na5Y(MoO4)3.97(WO4)0.03:Dy3+ and Na5Y(MoO4)3.97(VO4)0.03:Dy3+ phosphors have good prospects for application in n-UV-excited w-LEDs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号