首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16669篇
  免费   527篇
  国内免费   257篇
电工技术   49篇
综合类   948篇
化学工业   10029篇
金属工艺   203篇
机械仪表   90篇
建筑科学   1082篇
矿业工程   91篇
能源动力   34篇
轻工业   2092篇
水利工程   40篇
石油天然气   928篇
武器工业   20篇
无线电   70篇
一般工业技术   1501篇
冶金工业   174篇
原子能技术   83篇
自动化技术   19篇
  2024年   66篇
  2023年   260篇
  2022年   320篇
  2021年   283篇
  2020年   254篇
  2019年   363篇
  2018年   193篇
  2017年   224篇
  2016年   295篇
  2015年   395篇
  2014年   792篇
  2013年   685篇
  2012年   843篇
  2011年   893篇
  2010年   867篇
  2009年   902篇
  2008年   1085篇
  2007年   956篇
  2006年   979篇
  2005年   964篇
  2004年   999篇
  2003年   786篇
  2002年   600篇
  2001年   521篇
  2000年   442篇
  1999年   411篇
  1998年   321篇
  1997年   277篇
  1996年   256篇
  1995年   270篇
  1994年   183篇
  1993年   170篇
  1992年   148篇
  1991年   152篇
  1990年   130篇
  1989年   152篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 119 毫秒
1.
荣金闯  闫磊  宋昆仑  钟江 《涂料工业》2021,51(12):76-82
本文以羟基丙烯酸分散体和氨基树脂为主要反应物制备了水性氨基烤漆,研究了二丙二醇丁醚( DPnB)、乙二醇丁醚( BCS)、二乙二醇丁醚( DGBE)、丙二醇甲醚( PM)、丙二醇甲醚醋酸酯(PMA)、异丙醇( IPA)6种成膜助剂对水性氨基烤漆性能的影响。通过对样品进行动态、静态流变性的表征以及粒径测试,研究了各成膜助剂的作用机理。结果表明: PM对氨基树脂和羟丙分散体树脂都有较好的相容性,其作用在水相和分散体粒子之间,有利于分散体在成膜前体系的稳定性。同时使用 PM为成膜助剂时,漆膜具有较快的表干速度,干燥后表现出较好的力学性能。经 130 ℃烘烤 25 min后,漆膜的 60 °光泽达 89. 5,柔韧性达 1 mm,冲击正冲 50 cm,反冲 50 cm,铅笔硬度 H,说明 PM是本研究氨基烤漆体系的最佳成膜助剂。  相似文献   
2.
陈倩 《中国油脂》2021,46(6):53-58
以棕榈仁油乙氧基化物(SOE-N-60)为表面活性剂稳定高内相乳液(HIPEs)。通过对乳液外观、微观结构、粒径分布、黏度和流变学测试,研究了油相体积分数、SOE-N-60添加量对HIPEs性能的影响,同时对其稳定性进行考察。结果表明:SOE-N-60添加量为0.6%~1.5%(油相体积分数为83%)、油相体积分数为74%~86%(SOE-N-60添加量为1.0%)时可形成稳定的HIPEs,此时乳液液滴内部形成紧密堆积的网络结构,乳液粒径变小,具有弹性凝胶性质,并展现出很好的黏弹性和触变性,且随着油相体积分数和SOE-N-60添加量的增大,乳液黏弹性逐渐增强,同时HIPEs在(-5±1) ℃、(25±1) ℃、(40±1) ℃下贮存24 h时均具有良好的稳定性。  相似文献   
3.
以玉米秸秆为原料,通过亚氯酸钠-醋酸-氢氧化钠法提取纤维素(corn straw cellulose,CS),分别用硫酸水解和硫酸水解-高压均质联用的方法对CS进行改性,并以百里香精油作为油相制备Pickering乳液,研究改性前后纤维素作为乳化剂对Pickering乳液稳定性的影响。分别对改性前后纤维素的结构与性质进行表征,对所得乳液微观结构、粒径、电位、稳定性和流变特性进行测定。结果表明:与CS和硫酸水解改性的纤维素(cellulose precipitation,CP)相比,硫酸水解-高压均质联用改性的纤维素(high pressure homogenization cellulose,HPC)的粒径显著减小(P<0.05),为28.61μm。活性基团数量增多,静水接触角变大,达到76.1°,约为CS的2.4倍。CP的微观形貌呈现短棒状结构,表面光滑;而HPC呈现卷曲状,表面由平滑变得疏松多孔。改性后的玉米秸秆纤维素均提高了Pickering乳液的稳定性,其中由HPC稳定的乳液的稳定性最好,乳液粒径最小,为3.53μm,粒径分布也更均匀。在21 d的25℃贮藏中,液滴之间没...  相似文献   
4.
宋明娟 《材料保护》2022,55(4):116-122+166
选用热塑性丙烯酸树脂为主成膜物质的卷材耐指纹液,在固化成膜后容易出现黏连。为解决该问题,通过冷拼不同硬度的聚合物调整耐指纹膜层的硬度,以及通过筛选成膜助剂来调整耐指纹膜的固化程度,对耐指纹膜层的抗黏性能进行了表征。结果表明:在耐指纹液产品中拼入高硬度聚合物后,耐指纹涂层硬度提升,抗黏性明显改善,可自然剥离,无剥离声音,板面无损伤;选用亲水性、中速至慢速蒸发、半挥发期短、分配系数大的醇醚成膜助剂,可在极短固化时间内使耐指纹膜层的固化程度提升,抗黏性得到改善,轻微拨动钢板即可分离,无剥离声音,板面无损伤。  相似文献   
5.
采用强碱性基团胍基和十六烷基链接枝到气相二氧化硅颗粒表面的方法,制备了两种甲基胍丙基三甲氧基硅烷偶联剂(SiO_2—C和SiO_2—G),并通过精确调控两者比例,获得双官能团改性颗粒(SiO_2—GC)。研究结果表明:相对疏水的SiO_2—C和相对亲水的SiO_2—G颗粒均具有乳化作用,两者混合具有明显的协同乳化作用,且当两者等量混合时,乳化效果较佳;SiO_2—G和SiO_2—GC颗粒均可制备兼具乳化性和CO_2响应性的Pickering乳液,其中,SiO_2—GC粒径更小,乳化效果较佳,SiO_2—G的CO_2响应性相对较佳。  相似文献   
6.
以丙烯酸酯乳液作为粘结剂,水为分散介质,利用氧化铝颗粒对锂离子电池用聚乙烯(PE)隔膜进行了陶瓷改性,得到涂覆PE隔膜,并对其表面张力、接触角、浸润性、吸液率、热收缩及电化学性能进行了测定。结果表明:加入浆料质量0.10%的含氟表面活性剂后,浆料表面张力由37.0 mN/m降低至28.5 mN/m。涂覆PE隔膜对比PE隔膜,润湿性和耐热性能以及电化学性能均得到明显改善,吸液率由85%提高到165%,150℃的热收缩率从67.20%降至3.00%以内。200次循环,涂覆PE隔膜和PE隔膜的容量保持率分别为90.2%、84.7%,不同倍率下涂覆PE隔膜组装的电池,放电容量总是高于原PE隔膜组装的电池的放电容量,交流阻抗、伏安循环性能两者类似。  相似文献   
7.
可剥离及自脆性去污剂是目前使用较多的两种表面去污剂,但在实际使用过程中,可剥离型去污剂存在力学性能较差,不易剥离等问题。自脆性去污剂因膜片会发生脆裂,在固化过程中存在造成二次污染的潜在影响。为对表面去污剂的功能进行研究,通过选择不同单体,采用预乳液聚合的方式。制备了两种不同固化形貌的表面去污剂。红外和核磁结果表明,所选择的单体发生了共聚反应。三维深度测试表明在不同物体表明的高度值均小于10μm,去污剂能够很好地与物体表明进行结合,可剥离去污剂当单体配比为m(BA)∶m(MMA)=1∶0.9,其拉伸强度可达5.03 MPa,断裂伸长率可达638%,是一种很好的可剥离去污剂基材。通过对自脆型去污剂单体组合(MAA)与(MMA)的分析,对去污剂固化形貌的控制进行了研究,对自脆性去污剂脆化机理进行了探讨。  相似文献   
8.
9.
本文研究了马铃薯淀粉-丙烯酸接枝共聚物(Potato starch acrylic acid graft copolymer,PSAAGC)的制备工艺及其吸水性能。以吸水率为评价指标,采用正交实验设计,对PSAAGC的制备工艺条件进行优化,对粗产物进行纯化,并研究了PSAAGC粗产物及纯化产物在Na Cl和NH4Cl溶液中的吸水性能,以及对染料靛红的清除性能。最优工艺条件为:在反应时间2h、反应温度70℃、丙烯酸∶淀粉=4.5、引发剂和交联剂分别为淀粉用量的3.5%和0.25%的工艺条件下,PSAAGC粗产物的吸水率达196.26g·g-1,PSAAGC纯化产物的吸水率达413.69g·g-1,表明PSAAGC具有良好的吸水性能。在实验范围内,PSAAGC在Na Cl和NH4Cl溶液中的吸水性能,随着溶液浓度的增加而减弱。此外PSAAGC对染料靛红有一定的清除作用,随着染料靛红浓度的升高,清除效果呈先升后降的趋势,清除率最高可达91.54%,且纯化产物的性能优于粗产物。实验结果表明PSAAGC具有良好的吸水性能和清除染料靛红的能力,可为马铃薯淀粉的进一步研究与开发提供参考依据。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号