首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9730篇
  免费   556篇
  国内免费   373篇
电工技术   73篇
综合类   336篇
化学工业   3016篇
金属工艺   1682篇
机械仪表   413篇
建筑科学   571篇
矿业工程   272篇
能源动力   503篇
轻工业   385篇
水利工程   31篇
石油天然气   677篇
武器工业   81篇
无线电   175篇
一般工业技术   1949篇
冶金工业   370篇
原子能技术   48篇
自动化技术   77篇
  2024年   29篇
  2023年   141篇
  2022年   220篇
  2021年   310篇
  2020年   341篇
  2019年   254篇
  2018年   260篇
  2017年   287篇
  2016年   299篇
  2015年   337篇
  2014年   561篇
  2013年   514篇
  2012年   691篇
  2011年   794篇
  2010年   577篇
  2009年   600篇
  2008年   527篇
  2007年   611篇
  2006年   549篇
  2005年   429篇
  2004年   357篇
  2003年   379篇
  2002年   326篇
  2001年   258篇
  2000年   210篇
  1999年   196篇
  1998年   144篇
  1997年   105篇
  1996年   82篇
  1995年   45篇
  1994年   59篇
  1993年   29篇
  1992年   33篇
  1991年   20篇
  1990年   19篇
  1989年   17篇
  1988年   13篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
1.
Transition metals sulfide-based nanomaterials have recently received significant attention as a promising cathode electrode for the oxygen evolution reaction (OER) due to their easily tunable electronic, chemical, and physical properties. However, the poor electrical conductivity of metal-sulfide materials impedes their practical application in energy devices. Herein, firstly nano-sized crystals of cobalt-based zeolitic-imidazolate framework (Co-ZIF) arrays were fabricated on nickel-form (NF) as the sacrificial template by a facile solution method to enhance the electrical conductivity of the electrocatalyst. Then, the Co3S4/NiS@NF heterostructured arrays were synthesized by a simple hydrothermal route. The Co-ZIFs derived Co3S4 nanosheets are grown successfully on NiS nanorods during the hydrothermal sulfurization process. The bimetallic sulfide-based Co3S4/NiS@NF-12 electrocatalyst demonstrated a very low overpotential of 119 mV at 10 mA cm?2 for OER, which is much lower than that of mono-metal sulfide NiS@NF (201 mV) and ruthenium-oxide (RuO2) on NF (440 mV) electrocatalysts. Furthermore, the Co3S4/NiS@NF-12 electrocatalyst showed high stability during cyclic voltammetry and chronoamperometry measurements. This research work offers an effective strategy for fabricating high-performance non-precious OER electrocatalysts.  相似文献   
2.
An ecofriendly and biodegradable porous structure was prepared from drying aqueous foams based on nano fibrillated cellulose (NFC), extracted from softwood pulp by subcritical water/CO2 treatment (SC-NFC). The primary aim of this work was to use the modified SC-NFC as stabilizer for a water-based Pickering emulsion which upon drying, yielded porous cellulosic materials, a good dye adsorbent. In order to exploit the carboxymethylated SC-NFC (CMSC-NFC, with a degree of substitution of 0.35 and a charge density of 649 μeqv/g) as a stabilizer for water-based Pickering emulsion in subsequent step, an optimized quantity of octyl amine (30 mg/g of SC-NFC) was added to make them partially hydrophobic. A series of dry foam structures were prepared by varying the concentrations of treated CMSC-NFCs and 4 wt% was found to be the optimum concentration to yield foam with high porosity (99%) and low density (0.038 g/cc) along with high compression strength (0.24 MPa), superior to the conventionally extracted NFC. The foams were applied to capture as high as 98% of methylene blue dyes, making them a potential green candidate for treating industrial effluent. In addition, the dye adsorption kinetics and isotherms were found to be well suited with second order kinetics and Langmuir isotherm models.  相似文献   
3.
Aluminum alloy bipolar plates have unique application potential in proton exchange membrane fuel cell (PEMFC) due to the characteristics of lightweight and low cost. However, extreme susceptibility to corrosion in PEMFC operation condition limits the application. To promote the corrosion resistance of aluminum alloy bipolar plates, a Ni–P/TiNO coating was prepared by electroless plating and closed field unbalanced magnetron sputter ion plating (CFUMSIP) technology on the 6061 Al substrate. The research results show that Ni–P interlayer improves the deposition effect of TiNO outer layer and increase the content of TiN and TiOxNy phases. Compared to Ni–P and TiNO single-layer coatings, the Ni–P/TiNO coating samples exhibited the lowest current density value of (1.10 ± 0.02) × 10?6 A·cm?2 in simulated PEMFC cathode environment. Additionally, potential cyclic polarization measurements were carried out aiming to evaluate the durability of the aluminum alloy bipolar plate during the PEMFC start-up/shut-up process. The results illustrate that the Ni–P/TiNO coating samples exhibit excellent stability and corrosion resistance.  相似文献   
4.
Porous g-C3N4 nanosheets (PCN) were prepared by the nickel-assisted one-step thermal polymerization method.Hydrogen (H2) which was produced by the reaction between nickel (Ni) foam and ammonia (NH3) defined the structure and properties of PCN.During the formation of PCN,the participation of H2 not only enhanced the spacing between layers but also boosted the specific surface area that more active sites were exposed.Additionally,H2 promoted pores formation in the nanosheets,which was beneficial to the transfer of photons through lamellar structure and improved the absorption efficiency of visible light.Remarkably,the obtained PCN possessed better Cr(Ⅵ) photocatalytic reduction efficiency than pure g-C3N4.The reaction rate constant (k) of PCN (0.013 min-1) was approximately twice that of bare g-C3N4 (0.007 min-1).Furthermore,the effects of original pH and concentration of Cr(Ⅵ)-containing solution on removal efficiency of Cr(Ⅵ) were explored.A possible photocatalytic mechanism was proposed based on the experiments of radical scavengers and photoelectrochemical characterizations.  相似文献   
5.
6.
Twin screw granulation (TSG) is a new process of interest to the pharmaceutical community that can continuously wet granulate powders, doing so at lower liquid concentrations and with better product consistency than found by a high shear batch mixer. A considerable body of research has evolved over the short time since this process was introduced but generally with little comparison of results. A certain degree of confidence has been developed through these studies related to how process variables and many attributes of machinery configuration will affect granulation but some major challenges still lay ahead related to scalability, variations in the processing regimes related to degree of channel fill and the impact of wetting and granulation of complex powder formulations. This review examines the current literature for wet granulation processes studied in twin screw extrusion machinery, summarizing the influences of operational and system parameters affecting granule properties as well as strives to provide some practical observations to newly interested users of the technique.  相似文献   
7.
Abrasive water jet technology can be used for micro-milling using recently developed miniaturized nozzles. Abrasive water jet (AWJ) machining is often used with both the nozzle tip and workpiece submerged in water to reduce noise and contain debris. This paper compares the performance of submerged and unsubmerged abrasive water jet micro-milling of channels in 316L stainless steel and 6061-T6 aluminum at various nozzle angles and standoff distances. The effect of submergence on the diameter and effective footprint of AWJ erosion footprints was measured and compared. It was found that the centerline erosion rate decreased with channel depth due to the spreading of the jet as the effective standoff distance increased, and because of the growing effect of stagnation as the channel became deeper. The erosive jet spread over a larger effective footprint in air than in water, since particles on the jet periphery were slowed much more quickly in water due to increased drag. As a result, the width of a channel machined in air was wider than that in water. Moreover, it was observed that the instantaneous erosion rate decreased with channel depth, and that this decrease was a function only of the channel cross-sectional geometry, being independent of the type of metal, the jet angle, the standoff distance, and regardless of whether the jet was submerged or in air, in either the forward or backward directions. It is shown that submerged AWJM results in narrower features than those produced while machining in air, without a decrease in centerline etch rate.  相似文献   
8.
In this paper, cenosphere particles embedded in AA2014 aluminium matrix are used to fabricate syntactic foam by stir casting method. The particle size is about 100?µm and foam density is about 1990?kg?m?3. Compression tests at strain rate 0.001/s are performed on foam samples to characterise their mechanical properties which are then used in numerical analysis on commercial finite element analysis software ABAQUS/CAE with isotropic elastic-plastic material model. Experimental and numerical results show good conformity in deformation behaviour with elastic and plateau zones showing average deviations less than 5% and 20%, respectively. Foams showed high yield stress and energy absorption capabilities that can be useful in making blast and impact resistant structures.  相似文献   
9.
Existing alumina extraction and material production methods result in the formation of harmful ammonia gas or ammonia water originating from aluminum nitride (AlN) in dross. Therefore, in this study, aluminum dross was used as a denitration reagent to eliminate nitrogen oxides in flue gas and AlN in dross. Based on the proposed scheme, thermodynamic calculations were performed to investigate the denitrification effect and reduction of aluminum dross in flue gas. The results show that equilibrium concentrations of NO, NO2, and HF in the flue gas were influenced mainly by temperature; their concentrations increased with an increase in the temperature, reaching 4.4 × 10−20, 1.7 × 10−38, and 7.0 × 10−8 g/m3, respectively, at 923 K. The Gibbs free energy corresponding to the reaction of CO2 with Al/AlN in aluminum dross was −377/–120 kJ/mol. HF, originating from the reaction of NaF and water vapor, maintained an extremely low concentration of 6.99 × 10−8 g/m3 at 923 K. These results indicate that aluminum dross processing may clean the flue gas and increase the calorific value while eliminating the hazards of AlN. The results obtained herein will provide theoretical guidance toward new avenues of aluminum dross utilization.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号