首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62289篇
  免费   6376篇
  国内免费   2822篇
电工技术   4761篇
技术理论   2篇
综合类   4920篇
化学工业   10039篇
金属工艺   2317篇
机械仪表   3717篇
建筑科学   7860篇
矿业工程   2027篇
能源动力   7385篇
轻工业   5330篇
水利工程   706篇
石油天然气   2831篇
武器工业   1088篇
无线电   3142篇
一般工业技术   5353篇
冶金工业   3327篇
原子能技术   377篇
自动化技术   6305篇
  2024年   164篇
  2023年   1077篇
  2022年   2121篇
  2021年   2506篇
  2020年   2585篇
  2019年   2111篇
  2018年   2062篇
  2017年   2314篇
  2016年   2443篇
  2015年   2495篇
  2014年   3995篇
  2013年   3745篇
  2012年   4591篇
  2011年   4808篇
  2010年   3581篇
  2009年   3708篇
  2008年   3200篇
  2007年   4175篇
  2006年   3482篇
  2005年   3025篇
  2004年   2505篇
  2003年   2094篇
  2002年   1720篇
  2001年   1419篇
  2000年   1090篇
  1999年   851篇
  1998年   589篇
  1997年   506篇
  1996年   471篇
  1995年   365篇
  1994年   278篇
  1993年   203篇
  1992年   180篇
  1991年   134篇
  1990年   118篇
  1989年   86篇
  1988年   60篇
  1987年   58篇
  1986年   25篇
  1985年   55篇
  1984年   59篇
  1983年   33篇
  1982年   37篇
  1981年   19篇
  1980年   47篇
  1965年   19篇
  1964年   28篇
  1963年   26篇
  1961年   22篇
  1955年   25篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Sealing performance between two contacting surfaces is of significant importance to stable operation of proton exchange membrane (PEM) fuel cells. In this work, an analytical micro-scale approach is first established to predict the gas leakage in fuel cells. Gas pressure and uneven pressure distribution at the interface are also included in the model. At first, the micro tortuous leakage path at the interface is constructed by introducing contact modelling and fractal porous structure theory. In order to obtain the leakage at the entire surface, contact pressure distribution is predicted based on bonded elastic layer model. The gas leakage through the discontinuous interface can be obtained with consideration of convection and diffusion. Then, experiments are conducted to validate the numerical model, and good agreement is obtained between them. Finally, influences of surface topology, gasket compression and gasket width on leakage are studied based on the model. The results show that gas leakage would be greatly amplified when the asperity standard deviation of surface roughness exceeds 1.0 μm. Gaskets with larger width and smaller thickness are beneficial to sealing performance. The model is helpful to understand the gas leakage behavior at the interface and guide the gasket design of fuel cells.  相似文献   
2.
The gas diffusion substrate (GDS) is essential in the proton exchange membrane fuel cells. Its fabrication techniques affect the performance significantly and are worthy of investigation. In this study, a manufacturing process of the GDS is proposed to understand the formation process of GDS and promote its structure and performance more pertinently. Different states during the preparation process, raw carbon paper, pre-curing, curing, carbonation, and graphitization, are characterized and measured. Experimental and numerical methods are employed to determine the relationships between microstructure, transport, and mechanical performance variation with the fabricating processes. The results show that its porosity, average pore size, and effective diffusivity decrease first and increase after curing. These parameters after graphitization are lower than that of the carbon paper (CP). The electrical resistivity increases dramatically while pre-curing and decreases gradually after curing, carbonation, and graphitization, and it is much reduced after graphitization. Moreover, mechanical measurement results show that both the picks of tensile strength and flexural modulus occur after curing. Its tensile strength shows little change after graphitization compared to the initial paper's. In contrast, the flexural modulus is improved significantly.  相似文献   
3.
In this work, the SnS2 nanoflowers (SnS2 NFs) were solvothermally prepared in the solvent of ethanol, while SnS2 nanoplates (SnS2 NPs) were obtained through the identical conditions except for the solvent of water. The flowers were assembled with numerous nanosheets with very thin thickness, and the NPs exhibited hexagonal shape. When used as the battery-type electrode material for supercapacitors, the SnS2 NFs delivered a specific capacity of as high as 264.4 C g?1 at 1 A g?1, which was higher than the 201.6 C g?1 of SnS2 NPs. Furthermore, a hybrid supercapacitor (HSC) was assembled with the SnS2 as positive electrode and activated carbon (AC) as negative electrode, respectively. The SnS2 NFs//AC HSC exhibited a high energy density of 28.1 Wh kg?1 at 904.3 W kg?1, which was higher than the 24.2 Wh kg?1 at 844.3 W kg?1 of SnS2 NPs//AC HSC. Especially, when the power density was enhanced to the highest value of 8666.8 W kg?1, the NFs-based device could still hold 20.4 Wh kg?1. In addition, both HSC devices showed an excellent cycling stability after 5000 cycles at 5 A g?1. The present method is simple and can be extended to the preparation of other transition metal sulfides (TMSs)-based electrode materials with brilliant electrochemical performance for supercapacitors.  相似文献   
4.
In the present work, the heating performance of a new system combined with a new modified baseboard radiator and fan coil is investigated. Using longitudinal fins with special geometry and also forced airflow at the end of the system causes that at the lower inlet water temperature compared with the conventional models, higher heat output rate be obtained. The heat output rate of the new modified system is obtained by experimental metrology based on the European Standard No. EN-442. Temperature and velocity distribution in the room space is done by simulation of the modified system in the Flovent software. Computational fluid dynamics (CFD) results are validated against experimental results and there is a good agreement between them. Also, the energy consumption of the system during the winter season is calculated in TRANSYS software. Experimental results show that the heat output rate of a new modified heating system with inlet water temperature in the range of 45–55°C is on average 4.17 times higher compared with the conventional model. CFD simulation also showed that the combined system provides good thermal comfort conditions. Energy consumption of the new system reduced about 13% compared with conventional models.  相似文献   
5.
建立高效液相色谱法测定化妆品中依克多因的分析方法,采用Agilent Poroshell 120 EC-C18色谱柱(100 mm×3.0 mm,2.7μm)分离,以甲醇和p H为3.0的40 mmol/L磷酸二氢钠-10 mmol/L 1-庚烷磺酸钠缓冲溶液梯度洗脱,流速0.8 m L/min,柱温30℃,检测波长210 nm。采用外标法定量测定化妆品中的依克多因含量。结果表明,依克多因在5~800 mg/L的质量浓度范围内呈现良好线性关系,相关系数为0.999 8,方法的检出限和定量限分别为0.3和1.0 mg/L。该方法具有分离效率高、分析时间短、节省溶剂等优点,解决了依克多因在C18色谱柱上保留弱的问题。  相似文献   
6.
《Ceramics International》2022,48(24):36835-36844
Molybdate and tungstate with scheelite-type structure are excellent self-luminescent materials, which can be used as ideal hosts for the doping of rare-earth ions. In this study, a series of Eu3+-activated SrAO4 (A = Mo and W) phosphors were successfully synthesized, and their crystal structures, photoluminescence properties, and temperature measurement performance were analyzed in detail. These phosphors were excited by UV light (291 nm and 247 nm, respectively), with clear energy transfer (ET) (MoO42?→Eu3+ or WO42?→Eu3+). According to fluorescence intensity ratio (FIR) and Judd–Ofelt (J–O) theory, compared to SrWO4:0.01Eu3+ phosphor, SrMoO4:0.01Eu3+ phosphor exhibited better thermal stability, with relatively low Sa value (maximum values were 5.082 %K?1 and 20.74 %K?1, respectively), and their Sr values were not significantly different (maximum values were 0.864 %K?1 and 0.83 %K?1, respectively). Sa value was negatively correlated to central asymmetry of Eu3+, but the optimal Sr value tended to be more suitable for central asymmetry of Eu3+. In addition, Eu3+ exhibited stronger central asymmetry as well as covalency of Eu–O bond in SrMoO4. Results reveal that SrMoO4:xEu3+ and SrWO4:xEu3+ can be used for luminescent thermometers.  相似文献   
7.
《Ceramics International》2022,48(4):5091-5099
The impact of the addition of TiO2 nanoparticles and nanowires on the morphology, phase characteristics, contact angle, and electrochemical performance of chemically bonded phosphate ceramic coatings (CBPCs) was investigated. The chemical composition and surface morphology of the TiO2 nanoparticle and nanowire modified with and without (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane were characterized. Results indicated that the hydrophobic –CF2– and –CF3 groups were successfully introduced into the TiO2 nanoparticles and nanowires after modification. Corrosion resistance of CBPCs with TiO2 was evidently improved compared with that without TiO2. Such improvement was mainly due to the combined effects of low surface energy materials and micro/nano structures. In addition, CBPCs with TiO2 nanowires exhibited higher hydrophobicity and corrosion resistance than those with TiO2 nanoparticles because of the special columnar structure of the nanowires.  相似文献   
8.
In the present work it is found that the pyrotechnic composition VS-2 can be initiated with flash lamps IFC-500 and EVIS. VS-2 pyrotechnic composition contains 90% of mercury(Ⅱ) 5-hydrazinotetrazolate perchlorate and 10% of optically transparent copolymer of 2-methyl-5-vinyltetrazole and methacrylic acid (PVMT). We have found that the flash lamps make it possible to initiate combustion of VS-2 composition with its transition to detonation both in cylindrical charges placed in brass caps of 5 mm diameter and 2 mm high, and film charges with 10 mm×80 mm in size and surface weights of 60 mg·cm-2 and 90 mg·cm-2, showing ignition delay times 10 μs and 3 μs, respectively. We also measured detonation velocities for VS-2 composition film charges, which were 4375-4505 m·s-1 (of the charge being surface mass 60 mg·cm-2) and 4221-4281 m·s-1 (of the charge being surface mass 90 mg·cm-2) and their blasting action on the aluminum plate. The depths of the normal shock wave imprints at the charge-barrier interface were 0.6-0.7 mm (for surface mass of the film charges 60 mg·cm-2) and 1.2-1.3 mm (for surface mass of the film charges 90 mg·cm-2).  相似文献   
9.
《Ceramics International》2022,48(3):3669-3675
ZnAl2O4 nanocrystalline particles were prepared using the solution combustion method using a new combustion fuel, Leucine. The prepared samples' structural, microstructural–elemental composition, and optical characteristics were investigated using XRD, SEM-EDS, and UV–Visible spectroscopy. As-synthesized ZnAl2O4 nanoparticles are polycrystalline, with no secondary phases, and crystallized in a cubic - spinel structure. The polycrystalline nature of the prepared sample is due to the exothermicity of fuel and oxidizer, which demonstrate that the fuel utilized (Leucine) provided adequate energy for the production of nanoparticles in their as-synthesized form, as supported by adiabatic temperature through thermodynamic calculations. The thermodynamic calculations also include a universal method to estimate the specific heat capacity at constant pressure. Furthermore, even after 2 h of calcination at 600 °C, ZnAl2O4 exhibits a single phase with no secondary phases, indicating the material stability and single-phase nature. The crystallinity of ZnAl2O4 nanoparticles was observed to increase with increasing annealing temperature. SEM micrographs of as-synthesized samples exhibit the formation of dense particles, voids, and pores in the as-synthesized sample. In addition, tiny aggregates were detected on the surface of more prominent clusters, which reduced as the calcination progressed. In addition, calcined samples exhibit a greater optical reflectance than as-synthesized samples. Tauc's graphs were used to compute the optical energy bandgap. The calculated energy band gap is redshifted to that of the bulk material. The bandgap energy decreases upon calcination, suggesting that the prepared materials have a larger crystallite size or more crystallinity. Correlations were found between the Tad, and the structural and optical properties of the prepared samples. The findings suggest that Leucine could be used as a novel combustion fuel to produce crystalline ZnAl2O4 nanoparticles in their as-synthesis form.  相似文献   
10.
为了提高智能化光纤复合架空线路态势感知的实时性,将人工神经网络方法应用于光纤沿线应变解调,确定了神经网络的结构。编程实现了基于洛伦兹模型的最小二乘谱拟合方法和神经网络方法,采用不同信噪比和布里渊频移的布里渊谱训练神经网络,将它们应用于某光纤复合架空线路沿线光纤应变的测量,从不同角度比较了两种方法的计算结果。计算结果表明,神经网络方法能有效获得光纤沿线的布里渊频移进而获得应变,具有与谱拟合方法相似的准确性,但应变解调时间仅约为谱拟合方法的1/20000。研究结果为提高智能光纤复合架空线路态势感知的实时性提供了参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号