首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2605篇
  免费   306篇
  国内免费   164篇
电工技术   174篇
综合类   376篇
化学工业   141篇
金属工艺   119篇
机械仪表   167篇
建筑科学   720篇
矿业工程   73篇
能源动力   193篇
轻工业   23篇
水利工程   85篇
石油天然气   54篇
武器工业   23篇
无线电   261篇
一般工业技术   298篇
冶金工业   71篇
原子能技术   96篇
自动化技术   201篇
  2024年   3篇
  2023年   25篇
  2022年   37篇
  2021年   50篇
  2020年   67篇
  2019年   55篇
  2018年   65篇
  2017年   86篇
  2016年   72篇
  2015年   111篇
  2014年   162篇
  2013年   172篇
  2012年   251篇
  2011年   247篇
  2010年   180篇
  2009年   196篇
  2008年   156篇
  2007年   185篇
  2006年   169篇
  2005年   145篇
  2004年   95篇
  2003年   73篇
  2002年   64篇
  2001年   63篇
  2000年   62篇
  1999年   35篇
  1998年   34篇
  1997年   31篇
  1996年   40篇
  1995年   31篇
  1994年   26篇
  1993年   14篇
  1992年   16篇
  1991年   16篇
  1990年   10篇
  1989年   11篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1959年   3篇
  1951年   1篇
排序方式: 共有3075条查询结果,搜索用时 15 毫秒
1.
In this work, an experimental study of melting heat transfer of nano-enhanced phase change materials(NePCM) in a differentially-heated rectangular cavity was performed. Two height-to-width aspect ratios of the cavity, i.e., 0.9 and 1.5, were investigated. The model Ne PCM samples were prepared by dispersing graphene nanoplatelets(GNP) into 1-tetradecanol, having a nominal melting point of 37℃, at loadings up to 3 wt.%. The viscosity was found to have a more than 10-fold increase at the highest loading of GNP. During the melting experiments, the wall superheat at the heating boundary was set to be 10℃ or 30℃. It was shown that with increasing the loading of GNP, both the heat storage and heat transfer rates during melting decelerate to some extent, at all geometrical and thermal configurations. This suggested that the use of NePCM in such cavity may not be able to enhance the heat storage rate due to the dramatic growth in viscosity, which deteriorates significantly natural convective heat transfer during melting to overweigh the enhanced heat conduction by only a decent increase in thermal conductivity. This also suggested that the numerically predicted melting accelerations and heat transfer enhancements, as a result of the increased thermal conductivity, in the literature are likely overestimated because the negative effects due to viscosity growth are underestimated.  相似文献   
2.
This numerical study reveals the heat transfer performance of hybrid/single nanofluids inside a lid-driven sinusoidal trapezoidal-shaped enclosure. The right and left inclined surfaces of the trapezium have been considered as insulated, whereas the bottom sinusoidal wavy and the flat top surfaces of the enclosure as hot and cold, respectively. The governing partial differential equations of fluid's velocity and temperature have been resolved by applying the finite element method. The implications of Prandtl number (4.2-6.2), Richardson number (0.1-10.0), undulation number (0-3), nanoparticles volume fraction (0%-3%), and nanofluid/base fluid (water, water–copper (Cu), water–Cu–carbon nanotube, water–Cu–copper oxide (CuO), water–Cu–TiO2, and water–Cu–Al2O3) on the velocity and temperature profiles have been studied. Simulated findings have been represented by means of streamlines, isothermal lines, and average Nusselt number of above-mentioned hybrid nanofluids for varying the governing parameters. The comparison of heat transfer rates using hybrid nanofluids and pure water has been also shown. The heat transfer rate is increased about 15% for varying Richardson number from 0.1 to 10.0. Blending of two nanoparticles suspension in base fluid has a higher heat transfer rate—approximately 5% than a mononanoparticle. Moreover, a higher average Nusselt number is obtained by 14.7% using the wavy surface than the flat surface of the enclosure. Thus, this study showed that applying hybrid nanofluid may be beneficial to obtain expected thermal performance.  相似文献   
3.
An asymmetric‐metasurface based wideband circularly polarized (CP) microstrip antenna using a coaxial probe is proposed for L‐band applications. The antenna involves a stacked asymmetric‐metasurface, a radiating rectangular‐patch and a coaxial feed. An asymmetric‐metasurface is designed using rectangular unit cells and smaller size unit cells along one of the diagonal lines. The asymmetric‐metasurface is placed above a radiating rectangular‐patch with support of foam layer to achieve a wideband CP radiation. The measured performance of the prototype antenna achieves an impedance bandwidth (?10 dB return loss bandwidth) of 15.7% (1.58‐1.85 GHz) with CP bandwidth (3‐dB axial ratio) of 13% (1.58‐1.80 GHz) and gain of ≥9 dBic.  相似文献   
4.
凌庄子水厂蓄水池进水口处有一保水堰,为非标准薄壁堰,不能使用已有堰流公式对其过流量进行准确计算。为了得出较为精确的过流流量,按照重力相似准则制作几何比尺为1∶5的模型进行试验研究。在已有自由出流公式的基础上,对自由出流流量系数进行修正并对淹没情况下流量变化过程进行研究。对该非标准堰自由出流流量系数的实测值与经验值进行分析比较,发现堰板槽降低了实际自由出流过流能力。淹没出流的流量系数主要与下游尾水位有关,试验中形成的淹没式堰流受实际堰型尺寸影响,下游尾水位和堰上水位近似相等,不完全适用已有淹没出流流量公式,通过试验给出了修正淹没系数随h/p的变化关系。结果表明利用堰前、堰后水位初步计算过流流量是可行的,可为该工程提供参考,也可为实际工程中非标准矩形堰的流量计算提供思路。  相似文献   
5.
6.
Multiple-input multiple-output (MIMO) radar transmit beampattern design for one-dimensional arrays has been widely studied in literatures. In this paper, transmit beampattern design is considered for two-dimensional (2D) arrays. As the size of the array is increased, the computational complexity and time for pattern optimization are increased drastically. To overcome these problems, we introduced the conditions upon which the 2D beampattern design for uniform rectangular arrays (URA) can be achieved via the product of two perpendicular transmit beampatterns of uniform linear arrays (ULA). The transmit beampattern design is accomplished under special characteristics such as minimum integrated sidelobe level or special 3 dB beamwidth in azimuth and elevation with much lower computation time.  相似文献   
7.
Rectangular section control technology(RSCT)was introduced to achieve high-precision profile control during silicon steel rolling.The RSCT principle and method were designed,and the whole RSCT control strategy was developed.Specifically,RSCT included roll contour design,rolling technology optimization,and control strategy development,aiming at both hot strip mills(HSMs)and cold strip mills(CSMs).Firstly,through the high-performance variable crown(HVC)work roll optimization design in the upper-stream stands and the limited shifting technology for schedule-free rolling in the downstream stands of HSMs,a hot strip with a stable crown and limited wedge,local spot,and single wave was obtained,which was suitable for cold rolling.Secondly,an approximately rectangular section was obtained by edge varying contact(EVC)work roll contour design,edge-drop setting control,and closed loop control in the upper-stream stands of CSMs.Moreover,complex-mode flatness control was realized by coordinating multiple shape-control methods in the downstream stands of CSMs.In addition,the RSCT approach was applied in several silicon-steel production plants,where an outstanding performance and remarkable economic benefits were observed.  相似文献   
8.
The heat transfer phenomena inside a horizontal channel with an open trapezoidal enclosure subjected to a heat source of different lengths was investigated numerically in the present work. The heat source is considered as a local heating element of varying length, which is embedded at the bottom wall of the enclosure and maintained at a constant temperature. The air flow enters the channel horizontally at a constant cold temperature and a fixed velocity. The other walls of the enclosure and the channel are kept thermally insulated. The flow is assumed laminar, incompressible, and two‐dimensional, whereas the fluid is considered Newtonian. The results are presented in the form of the contours of velocity, isotherms, and Nusselt numbers profiles for various values of the dimensionless heat source lengths (0.16 ≤ ε ≤ 1). while, both Prandtl and Reynolds numbers are kept constant at (Pr = 0.71) and (Re = 100), respectively. The results indicated that the distribution of the isotherms depends significantly on the length of the heat source. Also, it was noted that both the local and the average Nusselt numbers increase as the local heat source length increases. Moreover, the maximum temperature is located near the heat source location.  相似文献   
9.
Impacts of an inclined electromagnetic force on a mixed convective process in two-sided lid-driven geometries using the two-energy equation model are examined in this study. The flow domain is filled by a porous medium and the local thermal nonequilibrium model is applied. Magnetic micropolar nanofluids are assumed as working fluids consisting of water as a base fluid and CuO as nanoparticles. The forced convection situation is due to the moving of the upper and lower walls in the right direction with a constant velocity. The used methodology depends on the finite volume method, together with the SIMPLE algorithm. The obtained outcomes are visualized using contours of the streamlines, isotherms for the nanofluid phase, isotherms for the solid phase, and angular velocity. The main findings revealed that the increase in lengths of the heated parts and the Nield number reduces the Nusselt number for the nanofluid phase. Also, the average heat transfer rate for the nanofluid and solid phases are boosted with the increase in the vortex viscosity.  相似文献   
10.
嵇晓雷 《山西建筑》2007,33(5):128-129
对钻孔咬合桩的特点以及在实际工程中的应用进行了介绍,并对施工中可能出现的难题及解决方法进行了总结,最后对钻孔咬合桩在围护结构应用中存在的问题进行了分析,以推广钻孔咬合桩施工技术。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号