首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21636篇
  免费   1568篇
  国内免费   1555篇
电工技术   1290篇
综合类   1073篇
化学工业   2401篇
金属工艺   6291篇
机械仪表   1395篇
建筑科学   641篇
矿业工程   632篇
能源动力   408篇
轻工业   1749篇
水利工程   122篇
石油天然气   531篇
武器工业   389篇
无线电   1379篇
一般工业技术   3035篇
冶金工业   2301篇
原子能技术   184篇
自动化技术   938篇
  2024年   29篇
  2023年   281篇
  2022年   432篇
  2021年   524篇
  2020年   554篇
  2019年   485篇
  2018年   446篇
  2017年   652篇
  2016年   649篇
  2015年   740篇
  2014年   1100篇
  2013年   1201篇
  2012年   1299篇
  2011年   1589篇
  2010年   1239篇
  2009年   1341篇
  2008年   1119篇
  2007年   1487篇
  2006年   1377篇
  2005年   1078篇
  2004年   917篇
  2003年   927篇
  2002年   910篇
  2001年   879篇
  2000年   731篇
  1999年   627篇
  1998年   427篇
  1997年   436篇
  1996年   351篇
  1995年   249篇
  1994年   206篇
  1993年   126篇
  1992年   114篇
  1991年   57篇
  1990年   57篇
  1989年   35篇
  1988年   16篇
  1987年   8篇
  1986年   14篇
  1985年   9篇
  1984年   9篇
  1983年   8篇
  1982年   3篇
  1981年   5篇
  1979年   2篇
  1977年   2篇
  1975年   2篇
  1973年   2篇
  1959年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(7):9124-9133
The main obstacles in lithium-ion battery are limited by rate performance and the rapid capacity fading of LiNi0.8Co0.1Mn0.1O2 (NCM811). Herein, a novel three-dimensional (3D) hierarchical coating material has been fabricated by in situ growing carbon nanotubes (CNTs) on the surfaces of Ni–Al double oxide (Ni–Al-LDO) sheets (named as LDO&CNT) with Ni–Al double hydroxide (Ni–Al-LDH) as both the substrate and catalyst precursor. The resultant LDO&CNT nanocomposites are uniformly coated on the surfaces of NCM811 by the physical mixing method. The rate capability of the resultant cathode material retains to 78.80% at a current rate of 3C. Its capacity retention increases by 6.7–14.42% compared with pristine NCM811 after 100 cycles within a potential range of 2.75–4.3 V at 0.5C. The improved rate capability and cycle performance of NCM811 are assigned to the synergistic effects between Ni–Al-LDO and CNTs. The hierarchical LDO&CNT nanocomposites coating on the surface of NCM811 avoids the aggregation of conductive CNTs and the stacking of Ni–Al-LDO nanosheets. Furthermore, it accelerates Li+ and electrons shuttle and reduces the reaction of Li2O with H2O and CO2 in air, which results in Li2CO3 and LiOH alkali formation on the NCM811 surface.  相似文献   
2.
The development of small molecules that can selectively target G-quadruplex (G4) DNAs has drawn considerable attention due to their unique physiological and pathological functions. However, only a few molecules have been found to selectively bind a particular G4 DNA structure. We have developed a fluorescence ligand Q1 , a molecular scaffold with a carbazole–pyridine core bridged by a phenylboronic acid side chain, that acts as a selective ascaris telomere antiparallel G4 DNA ASC20 ligand with about 18 nm blue-shifted and enhanced fluorescence intensity. Photophysical properties revealed that Q1 was sensitive to the microenvironment and gave the best selectivity to ASC20 with an equilibrium binding constant Ka=6.04×105 M−1. Time-resolved fluorescence studies also demonstrated that Q1 showed a longer fluorescence lifetime in the presence of ASC20. The binding characteristics of Q1 with ASC20 were shown in detail in a fluorescent intercalator displacement (FID) assay, a 2-Ap titration experiment and by molecular docking. Ligand Q1 could adopt an appropriate pose at terminal G-quartets of ASC20 through multiple interactions including π–π stacking between aromatic rings; this led to strong fluorescence enhancement. In addition, a co-staining image showed that Q1 is mainly distributed in the cytoplasm. Accordingly, this work provides insights for the development of ligands that selectively targeting a specific G4 DNA structure.  相似文献   
3.
Corrosion and wear failures are bottlenecks for restricting applications and developments of Al-based functional materials. As a new lubrication technology, superhydrophobic preparation provides an effective way to settle Al alloy corrosion. The preparation methods of superhydrophobic Al alloys are mainly multistep strategies. In this study, superhydrophobic Al alloy, has been prepared by an efficient one-step electrochemical etching process. Meanwhile, its micromorphology has been observed by a scanning electron microscope. The wettability has been measured by video optical contact angle meter. The corrosion behavior has been tested by electrochemical workstation, and wear performance has been characterized by friction tester. The results show that the micro-nanoterraced concave–convex structure has been fabricated and an as-prepared surface exhibits excellent superhydrophobic behavior. Further electrochemical and tribological tests show that corrosion resistance and wear resistance have also been significantly improved. This study provides a new method to prepare wear-resistant and corrosion-resistant Al alloy for widening applications of multifunctional Al-based engineering materials.  相似文献   
4.
Ceramic matrix composites (CMC) are highly required in many fields of science and engineering. However, the CMC parts always have poor surface finish. This study attempts to improve cutting performance of CMC material by combing the advantages of ultrasonic assisted cutting and diamond wire sawing. Cutting force, surface roughness, machined edge and tool wear are analyzed based on experimental results. It shows that the oscillatory movement of tool edges provides positive effect on particle ejection and residual material reduction. Ductile chip formation can be achieved due to the small tip radius of grits. Obvious decrease in cutting force, surface roughness and tool wear are obtained. Moreover, burrs, fuzzing and fracture are reduced. Meanwhile, both the surface characteristics and shape accuracy are significantly improved. These results provide a valuable basis for application of ultrasonic assisted wire sawing and understanding of CMC cutting mechanisms.  相似文献   
5.
在多晶硅太阳能电池的生产过程中, 金刚线切割技术(Diamond wire sawn, DWS)具有切割速度快、精度高、原材料损耗少等优点, 受到了广泛关注。金刚线切割多晶硅表面形成的损伤层较浅, 与传统的酸腐蚀制绒技术无法匹配, 金属催化化学腐蚀法应运而生。金属催化化学腐蚀法制绒具有操作简单、结构可控且易形成高深宽比的绒面等优点, 具有广阔的应用前景。本文总结了不同类型的金属催化剂在制绒过程中的腐蚀机理及其形成的绒面结构, 深入分析和讨论了具有代表性的银、铜的单一及复合催化腐蚀过程及绒面结构和电池片性能。最后对金刚线切割多晶硅片表面的金属催化化学腐蚀法存在的问题进行了分析, 并展望了未来的研究方向。  相似文献   
6.
The aim of this study was to determine the influence of severe plastic deformation processing and the changes in microstructure resulting therefrom on the corrosion resistance of an Al–Mg–Si alloy. The alloy was processed using incremental equal channel angular pressing, which caused a reduction in grain size from 15 to 0.9 µm. The grain refinement was accompanied by an increase in the number of grain boundaries and dislocations, and by changes in grain orientation. However, there was no change in the size and number of intermetallic particles, which presumably resulted in a constant number of galvanic couplings. Electrochemical experiments revealed only slight differences between the samples before and after processing. Higher potential transients/oscillations upon immersion and increased corrosion currents in the vicinity of corrosion potential point to slightly higher reactivity of the most refined material. This indicates that intermetallic particles are the most crucial microstructural elements in terms of corrosion resistance. Their impact exceeds that of grain boundaries, in particular, at the stage of corrosion initiation. The development of corrosion attack is controlled more by the microstructure of the matrix as the grain refinement resulted in a less pronounced corrosion attack in comparison with the coarse-grained sample.  相似文献   
7.
《Ceramics International》2022,48(2):1814-1819
Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ (x = 0, 0.2, 0.4) long persistent phosphors were prepared via solid-state process. The pristine Sr3Al2O5Cl2:Eu2+, Dy3+ phosphor exhibits orange/red broad band emission around 609 nm, which can be attributed to the electric radiation transitions 4f65 d1→4f7 of Eu2+. Upon the same excitation, the B3+-doped Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphors display red-shift from 609 nm to 625 nm with increasing B3+ concentrations. The XRD patterns show that Al3+ can be replaced by B3+ in the host lattice at the tetrahedral site, which causes lattice contraction and crystal field enhancement, and thereafter achieves the red-shift on the emission spectrum. The XPS investigation provides direct evidence of the dominant 2-valent europium in the phosphor, which can be ascribed for the broad band emission of the prepared phosphors. The afterglow of all phosphors show standard double exponential decay behavior, and the afterglow of Sr3Al2O5Cl2:Eu2+, Dy3+is rather weak, while the sample co-doped with B3+shows longer and stronger afterglow, as confirmed after the curve simulation. The analysis of thermally stimulated luminescence showed that, when B3+ is introduced, a much deeper trap is created, and the density of the electron trap is also significantly increased. As a result, B3+ ions caused redshift and enhanced afterglow for the Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphor.  相似文献   
8.
《Ceramics International》2022,48(12):17335-17342
When diamond wire saw is used in machining silicon nitride ceramics (Si3N4 ceramics), the ultra-hardness of Si3N4 causes the saw wire to wear out, which leads to the saw wire cutting performance constantly changing during its life cycle, and thus the machined quality of Si3N4 ceramics is affected. Surface roughness and topography are important indicators of the quality of the machined surface. In this paper, the diamond wire saw cutting experiment of Si3N4 ceramics was carried out, the effect of the evolution of saw wire cutting performance on the surface roughness and topography of Si3N4 ceramics as-sawn slices was investigated based on the analysis of the changes of saw wire wear topography, breaking force, bow angle and kerf loss during the sawing process. The results show that the surface roughness along the saw wire motion direction and the workpiece feed direction tends to decrease and then increase with the evolution of the cutting performance of the saw wire, which accords well with the trend of the as-sawn slices surface morphology. The results of the study can provide experimental reference for the development of high precision diamond wire saw cutting technology for Si3N4 ceramics.  相似文献   
9.
《Ceramics International》2022,48(17):24346-24354
The borided layer was prepared on the surface of the Ti–5Mo–5V–8Cr–3Al alloy by powder-pack boriding at 1000°C-10h. SEM, EPMA and TEM were used to investigate the effects of alloying elements (Al, V, Mo and Cr) on the growth of TiB whiskers in the borided Ti–5Mo–5V–8Cr–3Al alloy. Wear properties of borided Ti–5Mo–5V–8Cr–3Al alloy were investigated using dry reciprocating friction tests. SEM results show that the thickness of boride layer in Ti–5Mo–5V–8Cr–3Al alloy is thinner than that in the Cp-Ti. This is attributed to the enrichment of alloying elements especially V in TiB/substrate by TEM, which hinders the diffusion of B atoms, thus resulting in the short and thick TiB whiskers in Ti–5Mo–5V–8Cr–3Al alloy. Borided Ti–5Mo–5V–8Cr–3Al alloy has the better wear resistance than as-received alloy.  相似文献   
10.
《Ceramics International》2022,48(18):25933-25939
In order to gain more insights into the influence of rare earth elements on the melt structure of SiO2–CaO–Al2O3–MgO glass ceramics, Raman and X-ray photoelectron spectroscopy techniques were used to study the influence of La2O3 on the Si–O/Al–O tetrahedron structure within SiO2–CaO–Al2O3–MgO–quenched glass samples in this study. Results showed that some Raman peak shapes at low frequencies (200–840 cm?1) changed significantly after the addition of La2O3, compared to the high frequency (840–1200 cm?1) region that corresponds to the [SiO4] structure, suggesting that the depolymerization of the low-frequency T–O–T (T=Si or Al) structure was more prevalent with La3+ addition. Besides, the depolymerization extent of the Si–O/Al–O tetrahedral network varied when the melt composition altered. Most notably, depolymerization is the most significant at a low CaO/SiO2 ratio (0.25) and a high Al2O3 content (8%). Meanwhile, La3+ can promote the transformation of Si–O–Si and Al–O–Al bonds to the Si–O–Al ones, thereby forming a complex ionic cluster network interwoven with Si–O and Al–O tetrahedrons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号