首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20736篇
  免费   1928篇
  国内免费   1174篇
电工技术   748篇
综合类   1515篇
化学工业   2630篇
金属工艺   2146篇
机械仪表   848篇
建筑科学   2313篇
矿业工程   854篇
能源动力   1573篇
轻工业   517篇
水利工程   652篇
石油天然气   1662篇
武器工业   150篇
无线电   3068篇
一般工业技术   2681篇
冶金工业   598篇
原子能技术   197篇
自动化技术   1686篇
  2024年   56篇
  2023年   302篇
  2022年   469篇
  2021年   645篇
  2020年   666篇
  2019年   610篇
  2018年   525篇
  2017年   726篇
  2016年   711篇
  2015年   767篇
  2014年   1206篇
  2013年   1218篇
  2012年   1506篇
  2011年   1716篇
  2010年   1235篇
  2009年   1244篇
  2008年   1169篇
  2007年   1328篇
  2006年   1323篇
  2005年   1034篇
  2004年   877篇
  2003年   811篇
  2002年   647篇
  2001年   591篇
  2000年   492篇
  1999年   392篇
  1998年   303篇
  1997年   254篇
  1996年   207篇
  1995年   184篇
  1994年   130篇
  1993年   132篇
  1992年   105篇
  1991年   66篇
  1990年   47篇
  1989年   41篇
  1988年   27篇
  1987年   18篇
  1986年   10篇
  1985年   7篇
  1984年   8篇
  1983年   6篇
  1982年   5篇
  1981年   8篇
  1980年   1篇
  1979年   7篇
  1978年   1篇
  1976年   2篇
  1959年   2篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
It is urgently necessary to seek more simple and effective methods to construct superhydrophobic metal surfaces to improve the corrosion resistance and antifouling performance. Herein, a facile method for fabricating superhydrophobic aluminum alloy surface is developed via boiling water treatment and stearic acid modification. It is noteworthy that no prepolishing on aluminum alloy is required and no caustic reagents and typical equipments are used during the preparation procedure. Therefore, the fabrication method is quite a simple and environment-friendly technique. Both micro- and nano-scaled binary structure forms at the resultant aluminum alloy surface while long alkyl chains are grafted onto the rough aluminum alloy surface chemically. Consequently, the resultant aluminum alloy exhibits outstanding superhydrophobicity. More importantly, the superhydrophobicity has excellent universality, diversity, stability, excellent corrosion resistance, and antifouling performance. The facile preparation, excellent superhydrophobic durability, and outstanding performance are quite in favor of the practical application.  相似文献   
2.
The turbulent boundary layer control on NACA 0012 airfoil with Mach number ranging from 0.3 to 0.5 by a spanwise array of dielectric barrier discharge(DBD)plasma actuators by hot-film sensor technology is investigated.Due to temperature change mainly caused through heat produced along with plasma will lead to measurement error of shear stress measured by hot-film sensor,the correction method that takes account of the change measured by another sensor is used and works well.In order to achieve the value of shear stress change,we combine computational fluid dynamics computation with experiment to calibrate the hot-film sensor.To test the stability of the hot-film sensor,seven repeated measurements of shear stress at Ma = 0.3 are conducted and show that confidence interval of hot-film sensor measurement is from-0.18 to 0.18 Pa and the root mean square is 0.11 Pa giving a relative error 0.5%over all Mach numbers in this experiment.The research on the turbulent boundary layer control with DBD plasma actuators demonstrates that the control makes shear stress increase by about 6%over the three Mach numbers,which is thought to be reliable through comparing it with the relative error 0.5%,and the value is hardly affected by burst frequency and excitation voltage.  相似文献   
3.
The positive effects of a lithiophilic substrate on the electrochemical performance of lithium metal anodes are confirmed in several reports, while the understanding of lithiophilic substrate-guided lithium metal nucleation and growth behavior is still insufficient. In this study, the effect of a lithiophilic surface on lithium metal nucleation and growth behaviors is investigated using a large-area Ti3C2Tx MXene substrate with a large number of oxygen and fluorine dual heteroatoms. The use of the MXene substrate results in a high lithium-ion concentration as well as the formation of uniform solid–electrolyte-interface (SEI) layers on the lithiophilic surface. The solid–solid interface (MXene-SEI layer) significantly affects the surface tension of the deposited lithium metal nuclei as well as the nucleation overpotential, resulting in the formation of uniformly dispersed lithium nanoparticles ( ≈ 10–20 nm in diameter) over the entire MXene surface. The primary lithium nanoparticles preferentially coalesce and agglomerate into larger secondary particles while retaining their primary particle shapes. Subsequently, they form close-packed structures, resulting in a dense metal layer composed of particle-by-particle microstructures. This distinctive lithium metal deposition behavior leads to highly reversible cycling performance with high Columbic efficiencies >  99.0% and long cycle lives of over 1000 cycles.  相似文献   
4.
This work focuses on identifying the rate-determining step of oxygen transport through La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes with symmetric and asymmetric architectures. The best oxygen semipermeation fluxes are 3.4 10−3 mol. m-2.s-1 and 6.3 10−3 mol. m-2.s-1 at 900 °C for the symmetric membrane and asymmetric membrane with a modified surface. The asymmetric membrane with a modified surface leads to an increase of approximately 7 times the oxygen flux compared to that obtained with the La0.5Sr0.5Fe0.7Ga0.3O3-δ dense membrane without surface modification. This work also shows that the oxygen flux is mainly governed by gaseous oxygen diffusion through the porous support of asymmetric La0.5Sr0.5Fe0.7Ga0.3O3-δ membranes.  相似文献   
5.
Oxygen blocking the porous transport layer (PTL) increases the mass transport loss, and then limits the high current density condition of proton exchange membrane electrolysis cells (PEMEC). In this paper, a two-dimensional transient mathematical model of anode two-phase flow in PEMEC is established by the fluid volume method (VOF) method. The transport mechanism of oxygen in porous layer is analyzed in details. The effects of liquid water flow velocity, porosity, fiber diameter and contact angle on oxygen pressure and saturation are studied. The results show that the oxygen bubble transport in the porous layer is mainly affected by capillary pressure and follows the transport mechanism of ‘pressurization breakthrough depressurization’. The oxygen bubble goes through three stages of growth, migration and separation in the channel, and then be carried out of the electrolysis cell by liquid water. When oxygen breaks through the porous layer and enters the flow channel, there is a phenomenon that the branch flow is merged into the main stream, and the last limiting throat affects the maximum pressure and oxygen saturation during stable condition. In addition, increasing the liquid water velocity is helpful to bubble separation; changing the porosity and fiber diameter directly affects the width of pore throat and the correlative capillary pressure; increasing porosity, reducing fiber diameter and contact angle can promote oxygen breakthrough and reduce the stable saturation of oxygen.  相似文献   
6.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   
7.
Gas diffusion layer (GDL) is one of the most important components of fuel cells. In order to improve the fuel cell performance, GDL has developed from single layer to dual layers, and then to multiple layers. However, dual or multi layers in GDL are usually prepared by layer-by-layer methods, which cost too much time, energy, and resources. In this work, we successfully developed a facile one-step method to prepare a GDL with three functional layers by utilizing the different sedimentation rates and filtration rates of short carbon fiber (CF) and carbon nanotube (CNT). The treatment temperature for this GDL is much lower than that of traditional method. The thickness of the GDL can be effectively controlled from as thin as 50 μm to more than 200 μm by simply adjusting the content of CF. The GDL with high flexibility is suitable to develop high performance flexible electronics. The fuel cell with the GDL has the maximum power density 1021 mW cm?2, which shows 19% improvement comparing to the conventional one. Therefore, this work breaks the traditional concept that GDL for fuel cells only can be prepared by very complex and high-cost procedure.  相似文献   
8.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
9.
曾敏  王华  邹均名  李文斌 《中国造纸》2022,41(4):102-106
本文从内表面防结露、夏季隔热2个角度出发,对夏热冬冷及夏热冬暖地区代表城市采用的钢结构屋面的保温(隔热)层厚度进行计算分析。研究表明,在夏季室内温、湿度达到某一状态时,隔热厚度要大于冬季防结露的保温厚度。因此,夏热冬冷地区的造纸车间钢屋面保温层厚度应按夏季隔热计算确定,并进行冬季防结露验算;夏热冬暖地区按照冬季防结露计算即可。  相似文献   
10.
《Ceramics International》2022,48(22):32696-32702
Aluminum nitride (AlN) ceramics are becoming cutting-edge materials for electronic information and communication. However, raw AlN hydrolyzed rapidly, and the high storage costs of this material prevent widespread application. In this study, raw AlN was modified by boric acid (H3BO3) at 30 °C to enhance hydrolysis resistance. Transmission electron microscope (TEM), X-ray diffraction (XRD), the magic angle spinning nuclear magnetic resonance (27Al-MAS-NMR and 11B-MAS-NMR), and the fourier transform infrared spectrometer (FTIR) were used to characterize the powder before and after treatment, and the mechanism of hydrolysis resistance was determined. Modification with 0.1 M boric acid did not change the crystal phase of the AlN particles. The modified powder did not hydrolyse at 90% humidity and 70° Celsius. In the presence of boric acid, a network structure of B–O–B linkages ([BOn], n = 3 or 4) formed that was connected to the AlN core via chemical bonds of B–N–Al and B–O–Al. The protective 6 – 10 nm-thick layer that formed on the surface of the AlN crystal, prevented attack by water molecules and hindered the hydrolysis of aluminium nitride. This study provides an alternative means of preparing anti-hydrolysis AlN powders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号