首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  国内免费   5篇
  完全免费   93篇
  自动化技术   148篇
  2018年   20篇
  2017年   58篇
  2016年   29篇
  2015年   22篇
  2014年   12篇
  2013年   2篇
  2012年   2篇
  2010年   2篇
  2008年   1篇
排序方式: 共有148条查询结果,搜索用时 31 毫秒
1.
深度学习研究综述   总被引:10,自引:1,他引:9       下载免费PDF全文
深度学习是一类新兴的多层神经网络学习算法,因其缓解了传统训练算法的局部最小性,引起机器学习领域的广泛关注。首先论述了深度学习兴起渊源,分析了算法的优越性,并介绍了主流学习算法及应用现状,最后总结了当前存在的问题及发展方向。  相似文献
2.
深度学习及其在目标和行为识别中的新进展   总被引:9,自引:7,他引:2  
深度学习是机器学习中的一个新的研究领域。通过深度学习的方法构建深度网络来抽取特征是目前目标和行为识别中得到关注的研究方向。为引起更多计算机视觉领域研究者对深度学习进行探索和讨论,并推动目标和行为识别的研究,本文对深度学习及其在目标和行为识别中的新进展给予了概述。本文先介绍深度学习领域研究的基本状况、主要概念和原理;然后介绍近期利用深度学习在目标和行为识别应用中的一些新进展;最后阐述了深度学习与神经网络之间的关系,深度学习的优缺点,以及目前深度学习理论需要解决的主要问题。这对拟将深度学习应用于目标和行为识别的研究人员应有所帮助。  相似文献
3.
深度学习的昨天、今天和明天   总被引:5,自引:0,他引:5  
机器学习是人工智能领域的一个重要学科.自从20世纪80年代以来,机器学习在算法、理论和应用等方面都获得巨大成功.2006年以来,机器学习领域中一个叫“深度学习”的课题开始受到学术界广泛关注,到今天已经成为互联网大数据和人工智能的一个热潮.深度学习通过建立类似于人脑的分层模型结构,对输入数据逐级提取从底层到高层的特征,从而能很好地建立从底层信号到高层语义的映射关系.近年来,谷歌、微软、IBM、百度等拥有大数据的高科技公司相继投入大量资源进行深度学习技术研发,在语音、图像、自然语言、在线广告等领域取得显著进展.从对实际应用的贡献来说,深度学习可能是机器学习领域最近这十年来最成功的研究方向.将对深度学习发展的过去和现在做一个全景式的介绍,并讨论深度学习所面临的挑战,以及将来的可能方向.  相似文献
4.
大数据系统和分析技术综述   总被引:5,自引:0,他引:5       下载免费PDF全文
首先根据处理形式的不同,介绍了不同形式数据的特征和各自的典型应用场景以及相应的代表性处理系统,总结了大数据处理系统的三大发展趋势;随后,对系统支撑下的大数据分析技术和应用(包括深度学习、知识计算、社会计算与可视化等)进行了简要综述,总结了各种技术在大数据分析理解过程中的关键作用;最后梳理了大数据处理和分析面临的数据复杂性、计算复杂性和系统复杂性挑战,并逐一提出了可能的应对之策.  相似文献
5.
基于DBN模型的遥感图像分类   总被引:3,自引:0,他引:3  
遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地进行特征提取,从而发掘数据在时间与空间上的规律,进而提高分类的准确性.深度信念网络(deep belief network,DBN)是一种得到广泛研究与应用的深度学习模型,它结合了无监督学习和有监督学习的优点,对高维数据具有较好的分类能力.提出一种基于DBN模型的遥感图像分类方法,并利用RADARSAT-2卫星6d的极化合成孔径雷达(synthetic aperture radar,SAR)图像进行了验证.实验表明,与支持向量机(SVM)及传统的神经网络(NN)方法相比,基于DBN模型的方法可以取得更好的分类效果.  相似文献
6.
深度学习研究进展   总被引:3,自引:3,他引:0       下载免费PDF全文
深度学习(Deep Learning)是一个近几年备受关注的研究领域,在机器学习中起着重要的作用.如果说浅层学习是机器学习的一次浪潮,那么深度学习作为机器学习的一个新领域,将掀起机器学习的又一次浪潮.深度学习通过建立、模拟人脑的分层结构来实现对外部输入的数据进行从低级到高级的特征提取,从而能够解释外部数据.首先介绍了深度学习的由来,分析了浅层学习存在的弊端;其次列举了深度学习的经典方法,主要以监督学习和无监督学习来展开介绍;然后对深度学习的最新研究进展及其应用进行了综述;最后总结了深度学习发展所面临的问题.  相似文献
7.
基于改进的多层降噪自编码算法临床分类诊断研究   总被引:2,自引:0,他引:2  
针对临床分类诊断中普遍存在的样本不均衡、错分代价不同、大量无标签样本和测量误差等特点,引入了机器学习中较新的研究成果———多层降噪自编码(stacked denoising autoencoders,SDA)神经网络,并与欠采样局部更新的元代价(metacost)算法相结合,对 SDA 神经网络进行了改进,使组合模型具有代价敏感、降低不均衡性、有效利用无标签样本、抗噪声的特性。实验中将改进的 SDA 神经网络与 SOFTMAX 回归、反向传播(back propagation,BP)神经网络、支持向量机(support vector machine,SVM)、传统多层自编码(stacked autoencoders, SAE)神经网络,以及传统 SDA 神经网络等作了比较。实验结果表明,改进的 SDA 神经网络的准确率、ROC 曲线下面积等均优于其他模型,提高了分类模型的辅助诊断性能。  相似文献
8.
基于改进的稀疏深度信念网络的人脸识别方法   总被引:1,自引:0,他引:1  
由于稀疏表示在人脸识别上的优异表现,大量的研究关注于在深度网络上结合稀疏编码.常用的稀疏深度信念网络限制所有的隐藏单元具有相同的稀疏水平,这不是诱导稀疏表示最自然的方式.针对这个问题,根据压缩感知理论改进原来的稀疏项,添加了一个tan-sigmoid正则项逼近稀疏表示的最优解L0范数.这种方法不限制隐藏单元拥有相同的激活率,每个隐藏单元可以根据不同的任务自动学习到不同的稀疏水平.在ORL、UMIST和FERET人脸库上的识别结果表明,提出的方法与经典的稀疏深度模型相比,获得了很好的特征表示和识别效果.  相似文献
9.
基于局部二值模式和深度学习的人脸识别   总被引:1,自引:0,他引:1  
针对人脸识别中深度学习直接提取人脸特征时忽略了其局部结构特征的问题,提出一种将分块局部二值模式(LBP)与深度学习相结合的人脸识别方法.首先,将人脸图像分块,利用均匀LBP算子分别提取图像各局部的LBP直方图特征,再按照顺序连接在一起形成整个人脸的LBP纹理特征;其次,将得到的LBP特征作为深度信念网络(DBN)的输入,逐层训练网络,并在顶层形成分类面;最后,用训练好的深度信念网络对人脸样本进行识别.在ORL、YALE和FERET人脸库上的实验结果表明,所提算法与采用支持向量机(SVM)的方法相比,在小样本的人脸识别中有很好的识别效果.  相似文献
10.
近年来,在机器视觉中基于卷积神经网络(CNN)的特征提取方法取得了令人惊叹的成果,主要原因是深度学习在多层和低维的特征表示上有着很大的优势。但是由于在大尺度图像中卷积滤波的过程速度过慢,导致CNN参数调节困难、训练时间过长,针对这一问题,本文基于传统卷积神经网络(TCNN, Traditional convolution neural network)提出一种快速有效的多级金字塔卷积神经网络MLPCNN(Multi-level pyramid CNN)。这一网络使用权值共享的方法将低级的滤波权值共享到高级,保证CNN的训练只在较小尺寸的图像块上进行,加快训练速度。实验表明,在特征维数比较低的情况下,MLPCNN提取到的特征比传统的特征提取方法更加有效,在Caltech101数据库上,MLPCNN识别率达到81.32%,而且训练速度较TCNN网络提高了约2.5倍。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号