首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34233篇
  免费   5071篇
  国内免费   2862篇
电工技术   3175篇
综合类   4350篇
化学工业   2078篇
金属工艺   937篇
机械仪表   2339篇
建筑科学   1014篇
矿业工程   435篇
能源动力   656篇
轻工业   1094篇
水利工程   440篇
石油天然气   826篇
武器工业   554篇
无线电   8955篇
一般工业技术   4179篇
冶金工业   350篇
原子能技术   338篇
自动化技术   10446篇
  2024年   57篇
  2023年   647篇
  2022年   716篇
  2021年   1008篇
  2020年   1204篇
  2019年   1114篇
  2018年   1101篇
  2017年   1450篇
  2016年   1559篇
  2015年   1590篇
  2014年   2199篇
  2013年   2576篇
  2012年   2646篇
  2011年   2862篇
  2010年   2138篇
  2009年   2134篇
  2008年   2128篇
  2007年   2278篇
  2006年   1912篇
  2005年   1697篇
  2004年   1413篇
  2003年   1185篇
  2002年   1031篇
  2001年   865篇
  2000年   758篇
  1999年   578篇
  1998年   498篇
  1997年   479篇
  1996年   401篇
  1995年   351篇
  1994年   309篇
  1993年   235篇
  1992年   204篇
  1991年   185篇
  1990年   152篇
  1989年   107篇
  1988年   71篇
  1987年   48篇
  1986年   24篇
  1985年   25篇
  1984年   41篇
  1983年   48篇
  1982年   30篇
  1981年   27篇
  1980年   22篇
  1979年   11篇
  1978年   12篇
  1977年   14篇
  1975年   4篇
  1959年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
Renewable energy integration into existing or new energy hubs together with Green technologies such as Power to Gas and Green Hydrogen has become essential because of the aim of keeping the average global temperature rise within 2 °C with regard to the Paris Agreement. Hence, all energy markets are expected to face substantial transitions worldwide. On the other hand, investigation of renewable energy systems integrated with green chemical conversion, and in particular combination of green hydrogen and synthetic methanation, is still a scarce subject in the literature in terms of optimal and simultaneous design and operation for integrated energy grids under weather intermittency and demand uncertainty. In fact, the integration of such promising new technologies has been studied mainly in the operational phase, without considering design and management simultaneously. Thus, in this work, a multi-period mixed-integer linear programming (MILP) model is formulated to deal with the aforementioned challenges. Under current carbon dioxide limitations dictated by the Paris Agreement, this model computes the best configuration of the renewable and non-renewable-based generators, their optimal rated powers, capacities and scheduling sequences from a large candidate pool containing thirty-nine different equipment simultaneously. Moreover, the effect of the intermittent nature of renewable resources is analyzed comprehensively under three different scenarios for a specific location. Accordingly, a practical scenario generation method is proposed in this work. It is observed that photovoltaic, oil co-generator, reciprocating ICE, micro turbine, and bio-gasifier are the equipment that is commonly chosen under the three different scenarios. Results also show that concepts such as green hydrogen and power-to-gas are currently not preferable for the investigated location. On the other hand, analysis shows that if the emission limits are getting tightened, it is expected that constructing renewable resource-based grids will be economically more feasible.  相似文献   
3.
Higher transmission rate is one of the technological features of prominently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO–OFDM). One among an effective solution for channel estimation in wireless communication system, specifically in different environments is Deep Learning (DL) method. This research greatly utilizes channel estimator on the basis of Convolutional Neural Network Auto Encoder (CNNAE) classifier for MIMO-OFDM systems. A CNNAE classifier is one among Deep Learning (DL) algorithm, in which video signal is fed as input by allotting significant learnable weights and biases in various aspects/objects for video signal and capable of differentiating from one another. Improved performances are achieved by using CNNAE based channel estimation, in which extension is done for channel selection as well as achieve enhanced performances numerically, when compared with conventional estimators in quite a lot of scenarios. Considering reduction in number of parameters involved and re-usability of weights, CNNAE based channel estimation is quite suitable and properly fits to the video signal. CNNAE classifier weights updation are done with minimized Signal to Noise Ratio (SNR), Bit Error Rate (BER) and Mean Square Error (MSE).  相似文献   
4.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
5.
In recent years, the light field (LF) as a new imaging modality has attracted wide interest. The large data volume of LF images poses great challenge to LF image coding, and the LF images captured by different devices show significant differences in angular domain. In this paper we propose a view prediction framework to handle LF image coding with various sampling density. All LF images are represented as view arrays. We first partition the views into reference view (RV) set and intermediate view (IV) set. The RVs are rearranged into a pseudo sequence and directly compressed by a video encoder. Other views are then predicted by the RVs. To exploit the four dimensional signal structure, we propose the linear approximation prior (LAP) to reveal the correlation among LF views and efficiently remove the LF data redundancy. Based on the LAP, a distortion minimization interpolation (DMI) method is used to predict IVs. To robustly handle the LF images with different sampling density, we propose an Iteratively Updating depth image based rendering (IU-DIBR) method to extend our DMI. Some auxiliary views are generated to cover the target region and then the DMI calculates reconstruction coefficients for the IVs. Different view partition patterns are also explored. Extensive experiments on different types LF images also valid the efficiency of the proposed method.  相似文献   
6.
Rapid advancements in wearable electronics impose the challenge on power supply devices. Herein, a flexible single-electrode triboelectric nanogenerator (SE-TENG) that enables both human motion sensing and biomechanical energy harvesting is reported. The SE-TENG is fabricated by interpenetrating Ag-coated polyethylene terephthalate (PET) nanofibers within a polydimethylsiloxane (PDMS) elastomer. The Ag coating and PDMS are performed as the electrode and dielectric material for the SE-TENG, respectively. The Ag-coated PET nanofibers enlarge the electrode surface area, which is beneficial to increase sensing sensitivity. The flexible SE-TENG sensor shows the capability of outputting alternating electrical signals with an open-circuit voltage up to 50 V and a short-circuit current up to 200 nA in response to externally applied pressure. It is used to sense various types of human motions and harvest electric energy from body motion. The harvested energy can successfully power wearable electronics, such as an electronic watch and light-emitting diode. Therefore, the as-prepared SE-TENG sensor with a pressure response and self-powered capability provides potential applications in wearable sensors or flexible electronics for personal healthcare and human–machine interfaces.  相似文献   
7.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
8.
Graphene-based heterostructure composite is a new type of advanced sensing material that includes composites of graphene with noble metals/metal oxides/metal sulfides/polymers and organic ligands. Exerting the synergistic effect of graphene and noble metals/metal oxides/metal sulfides/polymers and organic ligands is a new way to design advanced gas sensors for nitrogen-containing gas species including NH3 and NO2 to solve the problems such as poor stability, high working temperature, poor recovery, and poor selectivity. Different fabrication methods of graphene-based heterostructure composite are extensively studied, enabling massive progress in developing chemiresistive-type sensors for detecting the nitrogen-containing gas species. With the components of noble metals/metal oxides/metal sulfides/polymers and organic ligands which are composited with graphene, each material has its attractive and unique electrical properties. Consequently, the corresponding composite formed with graphene has different sensing characteristics. Furthermore, working ambient gas and response type can affect gas-sensitive characteristic parameters of graphene-based heterostructure composite sensing materials. Moreover, it requires particular attention in studying gas sensing mechanism of graphene-based heterostructure composite sensing materials for nitrogen-containing gas species. This review focuses on related scientific issues such as material synthesis methods, sensing performance, and gas sensing mechanism to discuss the technical challenges and several perspectives.  相似文献   
9.
《Ceramics International》2022,48(11):15056-15063
Hydrogen (H2) sensors based on metal oxide semiconductors (MOS) are promising for many applications such as a rocket propellant, industrial gas and the safety of storage. However, poor selectivity at low analyte concentrations, and independent response on high humidity limit the practical applications. Herein, we designed rGO-wrapped SnO2–Pd porous hollow spheres composite (SnO2–Pd@rGO) for high performance H2 sensor. The porous hollow structure was from the carbon sphere template. The rGO wrapping was via self-assembly of GO on SnO2-based spheres with subsequent thermal reduction in H2 ambient. This sensor exhibited excellently selective H2 sensing performances at 390 °C, linear response over a broad concentration range (0.1–1000 ppm) with recovery time of only 3 s, a high response of ~8 to 0.1 ppm H2 in a minute, and acceptable stability under high humidity conditions (e. g. 80%). The calculated detection limit of 16.5 ppb opened up the possibility of trace H2 monitoring. Furthermore, this sensor demonstrated certain response to H2 at the minimum concentration of 50 ppm at 130 °C. These performances mainly benefited from the special hollow porous structure with abundant heterojunctions, the catalysis of the doped-PdOx, the relative hydrophobic surface from rGO, and the deoxygenation after H2 reduction.  相似文献   
10.
In this study, fluid flow over an array of eight, 0.029 m × 0.029 m, square cross‐section cylinders in an octagonal configuration is studied numerically. The mean force coefficients (drag and lift) and the vortex formation characteristics of the array are calculated numerically by utilizing a three‐dimensional large eddy simulation mathematical model for turbulence. The numerical simulation is performed with commercial software ANSYS Fluent 19R1. To investigate the parametric influences, three spacings between the cylinders (0.07, 0.14, and 0.2 m), two array attack angles (0° and 15°), and two Reynolds numbers (4060 and 45 800) are considered. The results comprise flow patterns and force coefficients' variations with Reynolds numbers. The lift force of the downstream cylinder reaches its maximum at α = 15°, and the drag force of the upstream cylinders finds its peak at α = 0°. It is observed through velocity and viscosity contour plots that vortex formation length near the cylinder increases at higher Reynolds number. Velocity vector plots are also presented to show fluid flow behavior near the cylinder. Furthermore, the predicted mean forces on the cylinders are slightly different for different Reynolds numbers, spacings, and angles of attack.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号