首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6105篇
  免费   583篇
  国内免费   330篇
电工技术   101篇
综合类   277篇
化学工业   1609篇
金属工艺   220篇
机械仪表   181篇
建筑科学   253篇
矿业工程   44篇
能源动力   137篇
轻工业   160篇
水利工程   124篇
石油天然气   46篇
武器工业   32篇
无线电   329篇
一般工业技术   870篇
冶金工业   1005篇
原子能技术   40篇
自动化技术   1590篇
  2024年   19篇
  2023年   141篇
  2022年   117篇
  2021年   156篇
  2020年   185篇
  2019年   154篇
  2018年   157篇
  2017年   217篇
  2016年   235篇
  2015年   189篇
  2014年   269篇
  2013年   414篇
  2012年   279篇
  2011年   463篇
  2010年   284篇
  2009年   358篇
  2008年   358篇
  2007年   368篇
  2006年   356篇
  2005年   305篇
  2004年   296篇
  2003年   241篇
  2002年   227篇
  2001年   178篇
  2000年   106篇
  1999年   111篇
  1998年   113篇
  1997年   68篇
  1996年   60篇
  1995年   56篇
  1994年   45篇
  1993年   36篇
  1992年   37篇
  1991年   31篇
  1990年   45篇
  1989年   35篇
  1988年   32篇
  1987年   30篇
  1986年   24篇
  1985年   30篇
  1984年   29篇
  1983年   15篇
  1982年   22篇
  1981年   13篇
  1980年   10篇
  1979年   10篇
  1977年   7篇
  1976年   6篇
  1957年   6篇
  1955年   13篇
排序方式: 共有7018条查询结果,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(11):15268-15273
SiC/SiC mini-composites reinforced with SiC fibers coated with different numbers of ZrSiO4 sublayers prepared via a non-hydrolytic sol-gel process were fabricated. The tensile strength and work of fracture of the prepared SiC/SiC mini-composites were determined, and the relationship between their mechanical properties and fracture morphologies was discussed. The toughening mechanism and the variation tendency of their mechanical properties were further elaborated by analyzing the interfacial debonding morphologies of the SiC/SiC mini-composites with 1 and 4 layers of ZrSiO4 interphase as well as the results of prior studies. A relatively rare phenomenon—the delamination of the multilayer ZrSiO4 interphase in the SiC/SiC mini-composites but not on the SiC fibers—was observed, which clearly demonstrated the weak bonding between the ZrSiO4 sublayers in the SiC/SiC mini-composites. The ZrSiO4 sublayer delamination mechanism was then explained based on the high-magnification morphologies found in and beside the ZrSiO4 interphase.  相似文献   
2.
Halide perovskites are a versatile class of semiconductors employed for high performance emerging optoelectronic devices, including flexoelectric systems, yet the influence of their ionic nature on their mechanical behavior is still to be understood. Here, a combination of atomic-force, optical, and compositional X-ray microscopy techniques is employed to shed light on the mechanical properties of halide perovskite films at the nanoscale. Mechanical domains within and between morphological grains, enclosed by mechanical boundaries of higher Young's Modulus (YM) than the bulk parent material, are revealed. These mechanical boundaries are associated with the presence of bromide-rich clusters as visualized by nano-X-ray fluorescence mapping. Stiffer regions are specifically selectively modified upon light soaking the sample, resulting in an overall homogenization of the mechanical properties toward the bulk YM. This behavior is attributed to light-induced ion migration processes that homogenize the local chemical distribution, which is accompanied by photobrightening of the photoluminescence within the same region. This work highlights critical links between mechanical, chemical, and optoelectronic characteristics in this family of perovskites, and demonstrates the potential of combinational imaging studies to understand and design halide perovskite films for emerging applications such as photoflexoelectricity.  相似文献   
3.
《Ceramics International》2022,48(4):5312-5320
Ce3+ and Pr3+ co?doped Lu3Al5O12 phosphors were synthesized by the sol–gel process, and their crystal structure, photoluminescence (PL) properties, and energy transfer (ET) from the Ce3+ to Pr3+ were studied. The Lu2.94?yAl5O12:0.06Ce3+, yPr3+ phosphors (0.002 ≤ y ≤ 0.008) showed the green?yellow emission from the 2D3/2 → 2F5/2, 7/2 transition of Ce3+ and the red emission at 610 and 637 nm, which were caused by the 1D23H4 and 3P03H5 transitions of Pr3+, respectively. The optimal concentration of Pr3+ for efficient ET was found to be x = 0.006. The electric quadrupole?quadrupole interaction was responsible for the concentration quenching in the Lu2.94?yAl5O12:0.06Ce3+, yPr3+ phosphors, based on Dexter's theory. The incorporation of Pr3+ for Lu3+ enhanced the red PL intensity in the Lu2.94Al5O12:0.06Ce3+ phosphor.  相似文献   
4.
5.
《Ceramics International》2022,48(6):7897-7904
High-performance B4C-PrB6 composites were prepared via hot-pressing sintering with matrix phase B4C and with 2–5 wt% Pr6O11 as additive. The effects of different sintering processes and Pr6O11 content on the microstructure and mechanical properties of the composites were studied in detail. It is found that increasing sintering temperature and pressure will contribute to the densification of B4C-PrB6 composites. Coarse grains are formed in B4C without additives at high temperature conditions, resulting in the decrease of the densification. Pr6O11 can effectively hinder the formation of coarse grains and finally promote the densification of the composites. The main toughening mechanisms of composites was crack deflection. The composites with 4 wt% Pr6O11 prepared at 2050 °C and 25 MPa had the best comprehensive mechanical properties. The relative density, hardness, flexural strength and fracture toughness reached to 98.9%, 37.6 GPa, 339 MPa and 4.4 MP am1/2, respectively.  相似文献   
6.
《Ceramics International》2022,48(9):12585-12591
In this study, zinc oxide (ZnO) nanofibers were prepared using the electrospinning method, and the effects of different spinning voltages and annealing temperatures on the fiber structure were tested. La0.8Sr0.2FeO3 (LSFO) perovskite film was prepared by a sol-gel method. Then we dip LSFO on ZnO nanofiber and grow it on the interdigital gold electrode substrate for gas sensors. The results show that the ZnO/LSFO heterostructure gas sensor has a good sensing response to H2S gas and exhibits good gas selectivity. The best gas response is 52.17% under 4 ppm H2S and work temperature 200°C, which has good recovery and reproducibility.  相似文献   
7.
Nanosized particles of CoAlxFe2-xO4, where 0?≤?x?≤?2, were synthesized by the sol–gel combustion method and the magnetic properties of these compounds were investigated. According to X-ray diffractograms, the samples are single phase and the crystallite size is between 7 and 25?nm. The room temperature saturation magnetization of the samples was estimated from the cation distribution and ferromagnetic resonance spectra were used to determine the magnetocrystalline anisotropy. The results show that the saturation magnetization and the magnetocrystalline anisotropy vary over a wide range, from maxima of Ms =?0.42?MA/m and K?=?0.39?kJ/m3 for x?=?1.0 to minima of almost zero for x?≈?1.4, a result that could be useful for practical applications of these materials.  相似文献   
8.
9.
To design a clinically translatable nanomedicine for photodynamic theranostics, the ingredients should be carefully considered. A high content of nanocarriers may cause extra toxicity in metabolism, and multiple theranostic agents would complicate the preparation process. These issues would be of less concern if the nanocarrier itself has most of the theranostic functions. In this work, a poly(ethylene glycol)‐boron dipyrromethene amphiphile (PEG‐F54‐BODIPY) with 54 fluorine‐19 (19F) is synthesized and employed to emulsify perfluorohexane (PFH) into a theranostic nanoemulsion (PFH@PEG‐F54‐BODIPY). The as‐prepared PFH@PEG‐F54‐BODIPY can perform architecture‐dependent fluorescence/photoacoustic/19F magnetic resonance multimodal imaging, providing more information about the in vivo structure evolution of nanomedicine. Importantly, this nanoemulsion significantly enhances the therapeutic effect of BODIPY through both the high oxygen dissolving capability and less self‐quenching of BODIPY molecules. More interestingly, PFH@PEG‐F54‐BODIPY shows high level of tumor accumulation and long tumor retention time, allowing a repeated light irradiation after a single‐dose intravenous injection. The “all‐in‐one” photodynamic theranostic nanoemulsion has simple composition, remarkable theranostic efficacy, and novel treatment pattern, and thus presents an intriguing avenue to developing clinically translatable theranostic agents.  相似文献   
10.
Hydrogen (H2) energy is a promising candidate to replace carbon monoxide (CO) as a reductant for iron oxide reduction in revolutionary ironmaking industrial processes, and numerous studies have been conducted to intensively study the utilization and impact of H2 in ironmaking processes. Therefore, this review first collects and compares the H2-assisted reduction mechanism and kinetics. The impacts of H2 on the reduction accompanying behaviors, such as the disintegration, swelling, sticking, softening, and melting of iron ores, are then summarized. Third, the performance of H2 predicted by either mass and heat balance models or numerical simulation models in various ironmaking processes is highlighted. Finally, the different applications of hydrogen-rich materials in blast furnace and non-blast furnace ironmaking processes are further compared to illuminate H2 utilization before our outlook on the use of H2 in the ironmaking industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号