首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
综合类   3篇
无线电   3篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
排序方式: 共有6条查询结果,搜索用时 190 毫秒
1
1.
利用工作在亚阈值区的MOS管代替传统电流基准中的三极管或电阻器件,实现了一款全CMOS器件的电流基准.利用PMOS管的体效应实现进一步的温度补偿;利用共源共栅和反馈结构有效地增加了基准电流源德电源抑制比;并利用当工艺发生偏差时CMOS管阈值电压、电子(空穴)迁移率和亚阈值区MOS管漏源电流之间的关系,降低了工艺涨落对基准电流的影响.本设计采用Cadence公司的Spectre软件以及CSMC公司的0.5 μm CMOS混合信号模型进行仿真设计,设计的基准电流中心值为1.62 μA.综合考虑温度、电压和工艺涨落对电流基准的影响,温度系数为1.58×10-4%/℃,电源抑制比为90.5 dB,工艺涨落仅造成基准电流±3.5%的变化.  相似文献   
2.
设计了输出电压为3.3 V,最大输出电流为100 mA的无片外电容低压差线性稳压器(LDO).该芯片采用并行结构的微分器和大米勒电容,通过比例调节和微分调节结合的方式,利用微分器电路在瞬间提供大的转换电流,克服了无片外电容LDO在负载和电源电压变化时输出电压跳变过大的问题.芯片采用CSMC公司0.5 μm工艺模型设计,并经过流片.测试结果表明,在5 V工作电压下,当负载电流从100 mA在1 μs内下降到1 mA时,输出电压变化小于600 mV;电路的静态电流小于4.5 μA.测试结果验证了电路设计的正确性.  相似文献   
3.
高精度、低温度系数带隙基准电压源的设计与实现   总被引:3,自引:0,他引:3  
为了提高传统带隙基准电压源的温度特性,本文采用一种双差分输入对的运算放大器对传统带隙基准电路进行高阶温度补偿。电路采用TSMC 0.35m CMOS混合信号工艺实现,采用Cadence公司Spectre软件进行电路仿真。仿真结果表明,带隙基准电压源在-40~125℃范围内的温度系数为2.2ppm/℃。  相似文献   
4.
新型高电源抑制比CMOS电流基准   总被引:1,自引:0,他引:1  
为提高CMOS集成电路中电流基准的精度和稳定性,提出了一种结构简单,电源抑制比(PSRR)很高的电流基准结构--三支路电流基准.应用基尔霍夫定律(Kirchhoff’s current and voltage law, Kcl Kvl)和偏微分方程,对比分析了传统的电流基准、共源共栅电流基准以及三支路电流基准的小信号模型,求解出了这3种电路的电源抑制比公式.对比发现传统电流基准和共源共栅电流基准的节点电压正反馈限制了电流基准的性能,三支路结构由于节点电压成强负反馈,拥有更高的PSRR.三支路电流基准采用了一阶温度补偿方案,保证了温度稳定性.经CSMC 0.5 μm工艺仿真结果显示,三支路基准在输入电压1.5~5.0 V的低频PSRR达-77.9 dB,明显优于另外两种结构;在-20~120 ℃温度区间内输出电流稳定性达到了255×10-6/℃,满足了大多数应用的要求.  相似文献   
5.
大电流、高稳定性的LDO线形稳压器   总被引:2,自引:1,他引:1  
以设计输出电流为800mA的高稳定线性稳压器(low-dropout voltage regulator,LDO)为目标,利用工作在线性区的MOS管具有压控电阻特性,构造零点跟踪电路以抵消随输出电流变化的极点,并且采用了改进型米勒补偿方案使电路系统具有60°的相位裕度,达到了大输出电流下的高稳定性要求.另外,分析了电路在转换发生时电路结构参数和负载整流特性的关系,提出了一种能在瞬间提供大电流的转换速率加强电路,达到了在负载电流从800mA到10mA跳变时,输出电压的跳变量控制在60mY以内,并且最长输出电压恢复时间在500μs以内.芯片采用CSMC公司的0.6μm CMOS数模混合信号工艺设计,并经过流片和测试,测试结果验证了设计方案.  相似文献   
6.
以设计输出电流为800mA的高稳定线性稳压器(low-dropout voltage regulator,LDO)为目标,利用工作在线性区的MOS管具有压控电阻特性,构造零点跟踪电路以抵消随输出电流变化的极点,并且采用了改进型米勒补偿方案使电路系统具有60°的相位裕度,达到了大输出电流下的高稳定性要求.另外,分析了电路在转换发生时电路结构参数和负载整流特性的关系,提出了一种能在瞬间提供大电流的转换速率加强电路,达到了在负载电流从800mA到10mA跳变时,输出电压的跳变量控制在60mY以内,并且最长输出电压恢复时间在500μs以内.芯片采用CSMC公司的0.6μm CMOS数模混合信号工艺设计,并经过流片和测试,测试结果验证了设计方案.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号