首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48057篇
  免费   15246篇
  国内免费   67篇
电工技术   962篇
综合类   109篇
化学工业   19322篇
金属工艺   648篇
机械仪表   1001篇
建筑科学   2395篇
矿业工程   77篇
能源动力   1254篇
轻工业   7998篇
水利工程   389篇
石油天然气   126篇
武器工业   12篇
无线电   7920篇
一般工业技术   13117篇
冶金工业   1291篇
原子能技术   79篇
自动化技术   6670篇
  2023年   129篇
  2022年   161篇
  2021年   670篇
  2020年   1699篇
  2019年   3391篇
  2018年   3405篇
  2017年   3690篇
  2016年   4217篇
  2015年   4232篇
  2014年   4277篇
  2013年   5768篇
  2012年   3350篇
  2011年   3085篇
  2010年   3189篇
  2009年   3109篇
  2008年   2621篇
  2007年   2423篇
  2006年   2084篇
  2005年   1712篇
  2004年   1654篇
  2003年   1621篇
  2002年   1501篇
  2001年   1266篇
  2000年   1243篇
  1999年   615篇
  1998年   259篇
  1997年   226篇
  1996年   151篇
  1995年   128篇
  1994年   129篇
  1993年   131篇
  1992年   93篇
  1991年   83篇
  1990年   84篇
  1989年   90篇
  1988年   60篇
  1987年   59篇
  1986年   62篇
  1985年   66篇
  1984年   74篇
  1983年   64篇
  1982年   46篇
  1981年   45篇
  1980年   43篇
  1979年   35篇
  1978年   38篇
  1977年   40篇
  1976年   43篇
  1975年   43篇
  1973年   37篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Elevated activation of the autophagy pathway is currently thought to be one of the survival mechanisms allowing therapy-resistant cancer cells to escape elimination, including for cytarabine (AraC)-resistant acute myeloid leukemia (AML) patients. Consequently, the use of autophagy inhibitors such as chloroquine (CQ) is being explored for the re-sensitization of AraC-resistant cells. In our study, no difference in the activity of the autophagy pathway was detected when comparing AraC-Res AML cell lines to parental AraC-sensitive AML cell lines. Furthermore, treatment with autophagy inhibitors CQ, 3-Methyladenine (3-MA), and bafilomycin A1 (BafA1) did not re-sensitize AraC-Res AML cell lines to AraC treatment. However, in parental AraC-sensitive AML cells, treatment with AraC did activate autophagy and, correspondingly, combination of AraC with autophagy inhibitors strongly reduced cell viability. Notably, the combination of these drugs also yielded the highest level of cell death in a panel of patient-derived AML samples even though not being additive. Furthermore, there was no difference in the cytotoxic effect of autophagy inhibition during AraC treatment in matched de novo and relapse samples with differential sensitivity to AraC. Thus, inhibition of autophagy may improve AraC efficacy in AML patients, but does not seem warranted for the treatment of AML patients that have relapsed with AraC-resistant disease.  相似文献   
2.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
3.
4.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
5.
An improved glucose-chelator-albumin bioconjugate (GluCAB) derivative, GluCAB-2Mal, has been synthesized and studied for in vivo 64Cu-PET/CT imaging in breast cancer mice models together with its first-generation analogue GluCAB-1Mal. The radioligand works on the principle of tumor targeting through the enhanced permeability and retention (EPR) effect with a supportive role played by glucose metabolism. [64Cu]Cu-GluCAB-2Mal (99 % RCP) exhibited high serum stability with immediate binding to serum proteins. In vivo experiments for comparison between tumor targeting of [64Cu]Cu-GluCAB-2Mal and previous-generation [64Cu]Cu-GluCAB-1Mal encompassed microPET/CT imaging and biodistribution analysis in an allograft E0771 breast cancer mouse model. Tumor uptake of [64Cu]Cu-GluCAB-2Mal was clearly evident with twice as much accumulation as compared to its predecessor and a tumor/muscle ratio of up to 5 after 24 h. Further comparison indicated a decrease in liver accumulation for [64Cu]Cu-Glu-CAB-2Mal.  相似文献   
6.
7.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
8.
The topical application of aspirin and omega-3 polyunsaturated fatty acids (PUFAs) may trigger the resolution of inflammation by inducing the biosynthesis of pro-resolvers such as lipoxins and resolvins while also avoiding the side effects of systemic aspirin intake. This study assessed the effect of enhanced granulation tissue (EGT) on periodontal tissue regeneration through the local application of aspirin and omega-3 PUFAs directly to granulation tissue (GT) during periodontal surgery. This randomized controlled experiment assesses 38 pockets in 19 patients. In every patient, two similar intrabony periodontal defects are treated with an open flap debridement, one with EGT (GT extracted, enhanced with aspirin and omega-3 PUFAs, and replaced) and the other with standard GT removal. Clinical attachment level (CAL) and probing pocket depth (PPD) are assessed at baseline and 2 and 6 months after surgery. The experimental protocol (EGT) results in a greater CAL gain as compared to that in the controls at 6 months (p < 0.05), while PPD reduction is not affected. The retained GT does not compromise healing. EGT is proposed as a promising, inexpensive, and simple method that may improve the outcome of periodontal regenerative treatment. However, the described protocol requires optimization and further assessment. Practical Applications : The biosynthesis of mediators including resolvins and lipoxins triggered by aspirin and omega-3 PUFAs promote the resolution of inflammation, eventually leading to faster regeneration of inflamed tissues. While granulation tissue is a necessary component in wound healing, enhancing granulation tissue with aspirin and omega-3 PUFAs results in CAL gain in the surgical treatment of periodontal defects. Retained granulation tissue does not compromise periodontal healing. The EGT strategy is an inexpensive and simple method that may improve the clinical outcomes of regenerative periodontal procedures.  相似文献   
9.
In this study, the hydraulic reactivity and cement formation of baghdadite (Ca3ZrSi2O9) was investigated. The material was synthesized by sintering a mixture of CaCO3, SiO2, and ZrO2 and then mechanically activated using a planetary mill. This leads to a decrease in particle and crystallite size and a partial amorphization of baghdadite as shown by X-ray powder diffraction (XRD) and laser diffraction measurements. Baghdadite cements were formed by the addition of water at a powder to liquid ratio of 2.0 g/ml. Maximum compressive strengths were found to be ~2 MPa after 3-day setting for a 24-h ground material. Inductively coupled plasma mass spectrometry (ICP-MS) measurements showed an incongruent dissolution profile of set cements with a preferred dissolution of calcium and only marginal release of zirconium ions. Cement formation occurs under alkaline conditions, whereas the unground raw powder leads to a pH of 11.9 during setting, while prolonged grinding increased pH values to approximately 12.3.  相似文献   
10.
The aim of this exploratory study has been to investigate the fire properties and environmental aspects of different upholstery material combinations, mainly for domestic applications. An analysis of the sustainability and circularity of selected textiles, along with lifecycle assessment, is used to qualitatively evaluate materials from an environmental perspective. The cone calorimeter was the primary tool used to screen 20 different material combinations from a fire performance perspective. It was found that textile covers of conventional fibres such as wool, cotton and polyester, can be improved by blending them with fire resistant speciality fibres. A new three‐dimensional web structure has been examined as an alternative padding material, showing preliminary promising fire properties with regard to ignition time, heat release rates and smoke production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号