首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2319篇
  免费   103篇
  国内免费   16篇
电工技术   47篇
综合类   8篇
化学工业   521篇
金属工艺   58篇
机械仪表   63篇
建筑科学   75篇
矿业工程   6篇
能源动力   136篇
轻工业   163篇
水利工程   19篇
石油天然气   14篇
无线电   222篇
一般工业技术   529篇
冶金工业   195篇
原子能技术   14篇
自动化技术   368篇
  2024年   7篇
  2023年   29篇
  2022年   54篇
  2021年   96篇
  2020年   67篇
  2019年   61篇
  2018年   111篇
  2017年   74篇
  2016年   77篇
  2015年   57篇
  2014年   85篇
  2013年   155篇
  2012年   100篇
  2011年   122篇
  2010年   101篇
  2009年   102篇
  2008年   105篇
  2007年   114篇
  2006年   77篇
  2005年   73篇
  2004年   57篇
  2003年   59篇
  2002年   36篇
  2001年   32篇
  2000年   24篇
  1999年   36篇
  1998年   52篇
  1997年   40篇
  1996年   38篇
  1995年   38篇
  1994年   38篇
  1993年   29篇
  1992年   20篇
  1991年   24篇
  1990年   13篇
  1989年   20篇
  1988年   13篇
  1987年   22篇
  1986年   17篇
  1985年   20篇
  1984年   12篇
  1983年   13篇
  1982年   11篇
  1981年   12篇
  1980年   13篇
  1979年   14篇
  1978年   13篇
  1977年   13篇
  1976年   11篇
  1975年   8篇
排序方式: 共有2438条查询结果,搜索用时 237 毫秒
1.
2.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
3.
The custom design of protein–dendron amphiphilic macromolecules is at the forefront of macromolecular engineering. Macromolecules with this architecture are very interesting because of their ability to self-assemble into various biomimetic nanoscopic structures. However, to date, there are no reports on this concept due to technical challenges associated with the chemical synthesis. Towards that end, herein, a new chemical methodology for the modular synthesis of a suite of monodisperse, facially amphiphilic, protein–dendron bioconjugates is reported. Benzyl ether dendrons of different generations (G1–G4) are coupled to monodisperse cetyl ethylene glycol to form macromolecular amphiphilic activity-based probes (AABPs) with a single protein reactive functionality. Micelle-assisted protein labeling technology is utilized for site-specific conjugation of macromolecular AABPs to globular proteins to make monodisperse, facially amphiphilic, protein–dendron bioconjugates. These biohybrid conjugates have the ability to self-assemble into supramolecular protein nanoassemblies. Self-assembly is primarily mediated by strong hydrophobic interactions of the benzyl ether dendron domain. The size, surface charge, and oligomeric state of protein nanoassemblies could be systematically tuned by choosing an appropriate dendron or protein of interest. This chemical method discloses a new way to custom-make monodisperse, facially amphiphilic, protein–dendron bioconjugates.  相似文献   
4.
The cover image is based on the Research Article V2O5/RGO/Pt nanocomposite on oxytetracycline degradation and pharmaceutical effluent detoxification by Mohan, H et al., DOI: 10.1002/jctb.6238 .

  相似文献   

5.
Nanocrystalline nickel oxide (NiO) was prepared from nickel hydroxide by Spark plasma sintering (SPS) and the mechanisms involved in the densification of NiO were studied. Reverse precipitated nickel hydroxide powders were SPS processed at 400, 600 and 700?°C with 70?MPa pressure. Pure NiO with 12?nm crystallite size formed after 400?°C sintering process. However NiO grains had grown to 18 and 38?nm after 600 and 700?°C sintering respectively. NiO pellets prepared using 600 and 700?°C SPS sintering schedules had relative densities of 83% and 94% respectively. Two displacement rate regimes were observed during densification of NiO in both 600 and 700?°C sintering processes. Decomposition of nickel hydroxide and particle sliding of NiO led to first displacement rate maximum while inverse Hall-Petch based plastic deformation facilitated densification during the constant second displacement rate regime. No densification occurred during sintering holding times indicating the limited role that diffusion played during densification.  相似文献   
6.
The cracks in the workpiece specimens can reduce the fatigue life of any machine components. Since the residual stress has a considerable amount of influence on determining crack formation over the machined surface, it is very essential to analyze the residual stress developed in any machining process. However, it is a very tedious process to compute the residual stress over the machined surface. In the present study, an endeavor has been made to measure and analyze the residual stress of machined silicon steel as a workpiece using the EDM process with different energy distribution. The nano-indentation method was used to compute the residual stress produced over the machined surface. From the experimental results, it was found that the uniform energy distribution has produced higher compressive residual stress owing to the tiny and uniform spark energy distribution. It has also been observed that the tool electrode has a considerable amount of influence on determining development of residual stress in the EDM process.  相似文献   
7.
Ferrites may contain single domain particles which gets converted into super-paramagnetic state near critical size. To explore the existence of these characteristic feature of ferrites, we have performed magnetization(M-H loop) and Mössbauer spectroscopic studies of Ni2+ substitution effect in Co1-xNixFe2O4 (where x?=?0, 0.25, 0.5, 0.75 and 1) nanoparticles were fabricated by solution combustion route using mixture of carbamide and glucose as fuels for the first time. As prepared samples exhibit spinel cubic structure with lattice parameters which decreases linearly with increase in Ni2+ concentration. The M-H loops reveals that saturation magnetization(Ms), coercive field(Hc) remanence magnetization(Mr) and magnetron number(ηB) decreases significantly with increasing Ni2+ substitution. The variation of saturation magnetization has been explained on the basis of Neel's molecular field theory. The coercive field(Hc) is found strongly dependent on the concentration of Ni2+ and decrease of coercivity suggests that the particles have single domain and exhibits superparamagnetic behavior. The Mössbauer spectroscopy shows two ferrimagnetically relaxed Zeeman sextets distribution at room temperature. The dependence of Mössbauer parameters such as isomer shift, quadru pole splitting, line width and hyperfine magnetic field on Ni2+ concentration have been discussed. Hence our results suggest that synthesized materials are potential candidate for power transformer application.  相似文献   
8.
Randomized scheduling algorithms for high-aggregate bandwidth switches   总被引:1,自引:0,他引:1  
The aggregate bandwidth of a switch is its port count multiplied by its operating line rate. We consider switches with high-aggregate bandwidths; for example, a 30-port switch operating at 40 Gb/s or a 1000-port switch operating at 1 Gb/s. Designing high-performance schedulers for such switches with input queues is a challenging problem for the following reasons: (1) high performance requires finding good matchings; (2) good matchings take time to find; and (3) in high-aggregate bandwidth switches there is either too little time (due to high line rates) or there is too much work to do (due to a high port count). We exploit the following features of the switching problem to devise simple-to-implement, high-performance schedulers for high-aggregate bandwidth switches: (1) the state of the switch (carried in the lengths of its queues) changes slowly with time, implying that heavy matchings will likely stay heavy over a period of time and (2) observing arriving packets will convey useful information about the state of the switch. The above features are exploited using hardware parallelism and randomization to yield three scheduling algorithms - APSARA, LAURA, and SERENA. These algorithms are shown to achieve 100% throughput and simulations show that their delay performance is quite close to that of the maximum weight matching, even when the traffic is correlated. We also consider the stability property of these algorithms under generic admissible traffic using the fluid-model technique. The main contribution of this paper is a suite of simple to implement, high-performance scheduling algorithms for input-queued switches. We exploit a novel operation, called MERGE, which combines the edges of two matchings to produce a heavier match, and study of the properties of this operation via simulations and theory. The stability proof of the randomized algorithms we present involves a derandomization procedure and uses methods which may have wider applicability.  相似文献   
9.
A three dimensional, transient model is developed for studying heat transfer, fluid flow and mass transfer for the case of a single-pass laser surface alloying process. The numerical study is performed in a co-ordinate system fixed to the laser which moves with a constant scanning speed. The coupled momentum, energy and species conservation equations are solved using a finite volume technique. Phase change processes are modelled using a fixed-grid enthalpy-porosity technique, which is capable of predicting the continuously evolving solid-liquid interface. The three-dimensional model is able to predict the species concentration distribution inside the molten pool during alloying, as well as in the entire cross section of the solidified alloy. Corresponding experimental results show a good qualitative agreement with the numerical predictions with regard to pool shape and final composition distribution.  相似文献   
10.
Mobile wireless sensor networks (MWSNs) will enable information systems to gather detailed information about the environment on an unprecedented scale. These self‐organizing, distributed networks of sensors, processors, and actuators that are capable of movement have a broad range of potential applications, including military reconnaissance, surveillance, planetary exploration, and geophysical mapping. In many of the foreseen applications, the MWSN will need to form a geometric pattern without assistance from the user. In military reconnaissance, for example, the nodes will be dropped onto the battlefield from a plane and land at random positions. The nodes will be expected to arrange themselves into a predetermined formation in order to perform a specific task. Thus, we present algorithms for forming a line, circle, and regular polygon from a given set of random positions. The algorithms are distributed and use no communication between the nodes to minimize energy consumption. Unlike past studies of geometric problems where algorithms are either tested in simulations where each node has global knowledge of all the other nodes or implemented on a small number of robots, the robustness of our algorithms has been studied with simulations that model the sensor system in detail. The simulations demonstrate that the algorithms are robust against random errors in the sensors and actuators. © 2004 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号