首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  国内免费   4篇
化学工业   1篇
石油天然气   28篇
  2023年   1篇
  2022年   7篇
  2021年   5篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   2篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
对催化裂化汽油中硫化物及烃类分布进行详细分析,确立第二代催化裂化汽油选择性加氢脱硫(RSDS-Ⅱ)技术的工艺路线。中试试验结果表明,RSDS-Ⅱ技术对多种原料油具有较好的适应性。工业应用标定结果表明,以烯烃体积分数38.7%~43.3%、硫质量分数250~470 g/g的催化裂化汽油为原料,经过RSDS-Ⅱ技术处理后汽油产品硫质量分数小于50 g/g,满足沪Ⅳ/欧Ⅳ排放标准,RON损失0.3~0.6个单位,说明RSDS-Ⅱ技术具有较好的脱硫活性和较高的选择性,完全可以满足炼油厂汽油质量升级的需要。  相似文献   
2.
针对以硫含量和烯烃含量高、芳烃含量低的催化裂化汽油为原料加氢脱硫生产满足车用汽油(Ⅴ)标准的汽油(简称国Ⅴ标准汽油)时辛烷值损失偏大的问题,开发了催化裂化汽油溶剂抽提-选择性加氢脱硫组合技术(简称RCDS技术)。中试结果表明,采用RCDS技术处理具有上述特点的催化裂化汽油生产国Ⅴ标准汽油时的RON损失比单独采用选择性加氢脱硫技术时减少0.9~1.9个单位。工业应用结果表明,采用RCDS技术处理硫质量分数为418~460 μg/g、烯烃体积分数为27.6%~27.9%、芳烃体积分数为19.2%~19.3%的清江石化催化裂化汽油,当产品硫质量分数降低至7 μg/g时,汽油RON损失仅为1.0~1.3个单位,且装置汽油收率高达99.9%。  相似文献   
3.
确立了第二代催化裂化汽油选择性加氢脱硫(RSDS-Ⅱ)的工艺技术路线,并提出工业装置长周期稳定运转的技术措施,即采用催化裂化稳定汽油作为原料、在加热炉前设置低温脱二烯烃反应器、设置原料过滤器等。工业应用结果表明,RSDS-Ⅱ技术可用于生产硫含量满足国Ⅲ或国Ⅳ排放标准的优质汽油,且产品辛烷值损失小,同时装置可以长周期稳定运行,完全可以满足炼油厂汽油质量升级的需要。  相似文献   
4.
The RTS technology can produce ultra-low sulfur diesel at lower costs using available hydrogenation catalyst and device. However, with the increase of the mixing proportion of secondary processed diesel fuel in the feed, the content of nitrogen compounds and polycyclic aromatic hydrocarbons in the feed increased, leading to the acceleration of the deactivation rate of the primary catalyst and the shortening of the service cycle. In order to fully understand the reason of catalyst deactivation, the effect of mixing secondary processed diesel fuel oil on the operating stability of the catalyst in the first reactor was investigated in a medium-sized fixed-bed hydrogenation unit. The results showed that the nitrogen compounds mainly affected the initial activity of the catalyst, but had little effect on the stability of the catalyst. The PAHs had little effect on the initial activity of the catalyst, but could significantly accelerate the deactivation of the catalyst. Combined with the analysis of the reason of catalyst deactivation and the study of RTS technology, the direction of RTS technology process optimization was put forward, and the stability of catalyst was improved obviously after process optimization.  相似文献   
5.
为更好发挥柴油超深度加氢脱硫(RTS)不同反应区域内不同类型催化剂的优势,在中型试验装置上考察了加氢反应活性高的 Ni-Mo-W型催化剂、直接脱硫反应活性高的Co-Mo型催化剂和具有轻微加氢改质活性的Ni-W型催化剂的不同级配方式对柴油超深度加氢脱硫反应的影响。结果表明:采用催化剂级配时与单独使用Ni-Mo-W催化剂时的超深度加氢脱硫效果相当;在第一反应器采用Ni-Mo-W型催化剂、第二反应器采用Ni-W型催化剂时,可有效降低加氢柴油产品的密度与多环芳烃含量;在第一反应器采用Ni-Mo-W型与Co-Mo型催化剂等体积比级配、第二反应器采用Co-Mo型催化剂的级配方案时,可有效降低柴油加氢反应的氢耗。  相似文献   
6.
在中型试验装置上考察催化裂化汽油选择性加氢脱硫过程烯烃加氢饱和反应动力学行为。结果表明,在催化裂化汽油选择性加氢脱硫过程中,不同碳数烯烃的加氢饱和反应速率常数随碳数的增加而下降。在同一反应条件下,不同碳数烯烃的加氢饱和率随碳数的增加呈先降低后上升的趋势。总烯烃、直链烯烃、支链烯烃和环烯烃的加氢饱和反应均可以按照1级反应来处理。直链烯烃与支链烯烃的加氢饱和反应速率常数大于环烯烃。与支链烯烃相比,直链烯烃反应速率常数对温度变化更敏感。  相似文献   
7.
利用催化裂化柴油(LCO)密度较高且富含芳烃的性质特点,开展了以LCO为原料生产高密度喷气燃料的工艺研究。结果表明,以LCO为原料,采用高芳烃饱和活性的NiMoW/Al2O3加氢精制催化剂,在适当的工艺条件下进行超深度加氢饱和,可使LCO中芳烃质量分数降低至5%以下。进一步通过气相色谱-质谱(GC-MS)方法进行详细的烃类分析,可明确各烃类的分布规律并考察富集单环、二环及三环环烷烃的馏分,确定全馏分LCO加氢生产高密度喷气燃料时理想的终馏点为270~280 ℃,在此分馏温度下可得到冰点低于-47 ℃、密度(20 ℃)大于0.835 g/cm3 的高密度喷气燃料组分。  相似文献   
8.
在中试装置上开展了RSDS-Ⅱ技术对不同原料油的适应性试验,结果表明:采用RSDS-II技术生产硫含量小于50?g/g的汽油,原料为高硫、高烯烃的常规FCC汽油时,RON损失不大于1.8个单位;原料为高硫MIP汽油时,RON损失不大于0.9个单位;原料为中、低硫MIP汽油时,RON损失不大于0.2个单位;对于中、低硫含量的MIP汽油或催化裂化原料经过预加氢处理后的MIP汽油,采用RSDS-II生产品硫含量小于10?g/g,满足未来国V标准的汽油时,RON损失不大于1个单位,说明RSDS-II技术对多种原料油具有很好的适应性。RSDS-II技术在多套工业装置上成功工业应用,且实现了装置的连续稳定运转。其中上海石化的应用结果表明,以烯烃体积分数38.7%~43.3%、硫含量250μg/g~470μg/g的催化裂化汽油为原料,经过RSDS-Ⅱ技术处理后汽油产品硫含量为33?g/g~46?g/g,RON损失0.3~0.6个单位,装置连续稳定运转超过30个月。工业应用情况表明RSDS-II技术完全可以满足炼油厂汽油质量升级的需要。  相似文献   
9.
拓宽直馏煤油馏分(提高直馏煤油的终馏点)可以增产喷气燃料,但馏分拓宽后会导致原料油的硫、氮含量增加,同时也会导致烟点降低和冰点升高。对馏分拓宽的直馏煤油进行低压加氢工艺试验,研究结果表明较高的反应温度、较低的体积空速有利氮化物的脱除,但在高温情况下会导致产品的色度下降。对低压加氢工艺流程进行优化升级,开发了生产喷气燃料的低压直馏煤油加氢新工艺。与常规工艺相比,该新工艺具有较强的加氢性能,同时还具有改善喷气燃料产品颜色的性能。  相似文献   
10.
催化裂化汽油选择性加氢脱硫工艺流程选择   总被引:5,自引:2,他引:3  
研究了催化裂化汽油加氢脱硫各种可能的加工流程。结果表明,将汽油切割成轻重馏分分别进行处理,可以大幅度减少汽油烯烃在加氢脱硫过程中的饱和;轻馏分汽油中硫醇可以通过碱抽提方式脱除,不影响汽油烯烃含量;由于汽油中的二烯烃在较缓和条件下能促进胶质的生成,需要进行选择性脱二烯烃;由于循环氢中的硫化氢对加氢脱硫反应有抑制作用、对烯烃饱和反应有促进作用,应增加循环氢脱硫化氢系统;产品中的硫醇可经固定床氧化脱除。根据催化裂化汽油原料特性、反应动力学及工业应用需要确定选择性加氢脱硫的工艺流程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号