首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   6篇
无线电   6篇
  2007年   6篇
排序方式: 共有6条查询结果,搜索用时 178 毫秒
1
1.
采用了MOCVD生长技术来获得高阻GaN,发现GaN的方块电阻会随着成核层退火压力的降低而迅速升高.当成核层退火压力降到75torr时,形成了高阻GaN,方块电阻达到1011Ω/□以上.原子力显微镜结果显示高阻GaN的表面非常平整,表面粗糙度只有0.15nm.在位激光检测发现高阻样品的成核层经过退火后会形成密度较高的成核岛.样品的X射线分析结果表明,随着退火压力的改变,刃型位错相对于螺型位错会有较大变化.说明刃型位错是GaN电阻变化的主要原因.  相似文献   
2.
通过高温Hall测量研究了GaN和AlxGa1-xN/GaN异质结从室温到500℃高温下的输运性质.实验发现GaN背景载流子浓度随着温度的升高而升高,载流子浓度变化的幅度和GaN的位错密度存在正比关系,持续光电导的跃迁幅度和GaN的位错密度也存在正比关系,说明位错相关的深施主或者陷阱对GaN在高温下的背景浓度有很大影响.实验发现AlxGa1-xN/GaN异质结中二维电子气的浓度在室温到250℃的范围内随着温度的升高而下降,然后随着温度的升高开始增加.前者主要是由于随着温度的升高,AlxGa1-xN/GaN异质结的导带不连续减小引起的,后者主要是由GaN层背景载流子浓度增加导致的.通过求解自洽的薛定谔和泊松方程得到的二维电子气浓度的温度关系和实验结果一致.  相似文献   
3.
采用纳米压痕方法,研究了AlN/sphire模板上的高Al组分AlxGa1-xN薄膜的力学性质,特别是弹性-塑性转变行为.研究表明,AlxGa1-xN薄膜的杨氏模量E随着Al组分的增加而增大,薄膜中产生塑性形变所必要的剪切应力也随着Al组分的增加而增大.在AlxGa1-xN薄膜纳米压痕实验中,观察到位移不连续的跳断("pop-in")行为,并且发现"pop-in"行为强烈依赖于Al组分,Al组分的增加导致这种行为的减少.我们认为随着Al组分的增加,AlxGa1-xN中键能的增强和由于AlxGa1-xN与AlN/sapphire模板之间晶格失配减少这两个因素增加了AlxGa1-xN中新位错形成的阻力,从而导致了AlxGa1-xN薄膜中的"pop-in"行为随Al组分增加而减少.  相似文献   
4.
采用纳米压痕方法,研究了AlN/sphire模板上的高Al组分AlxGa1-xN薄膜的力学性质,特别是弹性-塑性转变行为.研究表明,AlxGa1-xN薄膜的杨氏模量E随着Al组分的增加而增大,薄膜中产生塑性形变所必要的剪切应力也随着Al组分的增加而增大.在AlxGa1-xN薄膜纳米压痕实验中,观察到位移不连续的跳断("pop-in")行为,并且发现"pop-in"行为强烈依赖于Al组分,Al组分的增加导致这种行为的减少.我们认为随着Al组分的增加,AlxGa1-xN中键能的增强和由于AlxGa1-xN与AlN/sapphire模板之间晶格失配减少这两个因素增加了AlxGa1-xN中新位错形成的阻力,从而导致了AlxGa1-xN薄膜中的"pop-in"行为随Al组分增加而减少.  相似文献   
5.
通过高温Hall测量研究了GaN和AlxGa1-xN/GaN异质结从室温到500℃高温下的输运性质.实验发现GaN背景载流子浓度随着温度的升高而升高,载流子浓度变化的幅度和GaN的位错密度存在正比关系,持续光电导的跃迁幅度和GaN的位错密度也存在正比关系,说明位错相关的深施主或者陷阱对GaN在高温下的背景浓度有很大影响.实验发现AlxGa1-xN/GaN异质结中二维电子气的浓度在室温到250℃的范围内随着温度的升高而下降,然后随着温度的升高开始增加.前者主要是由于随着温度的升高,AlxGa1-xN/GaN异质结的导带不连续减小引起的,后者主要是由GaN层背景载流子浓度增加导致的.通过求解自洽的薛定谔和泊松方程得到的二维电子气浓度的温度关系和实验结果一致.  相似文献   
6.
采用了MOCVD生长技术来获得高阻GaN,发现GaN的方块电阻会随着成核层退火压力的降低而迅速升高.当成核层退火压力降到75torr时,形成了高阻GaN,方块电阻达到1011Ω/□以上.原子力显微镜结果显示高阻GaN的表面非常平整,表面粗糙度只有0.15nm.在位激光检测发现高阻样品的成核层经过退火后会形成密度较高的成核岛.样品的X射线分析结果表明,随着退火压力的改变,刃型位错相对于螺型位错会有较大变化.说明刃型位错是GaN电阻变化的主要原因.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号