首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
化学工业   7篇
金属工艺   1篇
机械仪表   1篇
建筑科学   3篇
能源动力   1篇
轻工业   1篇
无线电   5篇
一般工业技术   8篇
原子能技术   1篇
自动化技术   2篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2011年   4篇
  2009年   2篇
  2007年   2篇
  2006年   2篇
  1999年   2篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
We have developed an easy-to-use computer-based system for recording, displaying, storing and analyzing signals generated by Clark-type oxygen electrodes. A user-friendly interface of Windows-based program BioMed significantly increases the productivity of investigations. It allows to process, control, present and archive the experimental data in real time. A 12-bit analog-to-digital-converter, analog and digital filters, a possibility to zoom the obtained respiratory curves and calculation of the respiration rates by a linear regression method increase the resolution of the estimated oxygen consumption rates. The new system enables to register even small changes, such as 3-5 ngatoms O/min, in respiration rates of biological objects -- enzymes, mitochondria and permeabilized muscle fibers. The system has been developed and is regularly used for the respirometric investigations at the Laboratory of Biochemistry, Institute for Biomedical Research, Kaunas University of Medicine.  相似文献   
2.
In light‐emitting electrochemical cells (LECs), the position of the emission zone (EZ) is not predefined via a multilayer architecture design, but governed by a complex motion of electrical and ionic charges. As a result of the evolution of doped charge transport layers that enclose a dynamic intrinsic region until steady state is reached, the EZ is often dynamic during turn‐on. For thick sandwich polymer LECs, a continuous change of the emission color provides a direct visual indication of a moving EZ. Results from an optical and electrical analysis indicate that the intrinsic zone is narrow at early times, but starts to widen during operation, notably well before the electrical device optimum is reached. Results from numerical simulations demonstrate that the only precondition for this event to occur is that the mobilities of anions (μa) and cations (μc) are not equal, and the direction of the EZ shift dictates μc > μa. Quantitative ion profiles reveal that the displacement of ions stops when the intrinsic zone stabilizes, confirming the relation between ion movement and EZ shift. Finally, simulations indicate that the experimental current peak for constant‐voltage operation is intrinsic and the subsequent decay does not result from degradation, as commonly stated.  相似文献   
3.
Protein aggregate formation is linked with multiple amyloidoses, including Alzheimer‘s and Parkinson‘s diseases. Currently, the understanding of such fibrillar structure formation and propagation is still not sufficient, the outcome of which is a lack of potent, anti-amyloid drugs. The environmental conditions used during in vitro protein aggregation assays play an important role in determining both the aggregation kinetic parameters, as well as resulting fibril structure. In the case of alpha-synuclein, ionic strength has been shown as a crucial factor in its amyloid aggregation. In this work, we examine a large sample size of alpha-synuclein aggregation reactions under thirty different ionic strength and protein concentration combinations and determine the resulting fibril structural variations using their dye-binding properties, secondary structure and morphology. We show that both ionic strength and protein concentration determine the structural variability of alpha-synuclein amyloid fibrils and that sometimes even identical conditions can result in up to four distinct types of aggregates.  相似文献   
4.
Perovskite light emitting diodes (PeLEDs) have reached external quantum efficiencies (EQEs) over 21%. Their EQE, however, drops at increasing current densities (J) and their lifetime is still limited to just a few hours. The mechanisms leading to EQE roll‐off and device instability require thorough investigation. Here, improvement in EQE, EQE roll‐off, and lifetime of PeLEDs is demonstrated by tuning the balance of electron/hole transport into a mixed 2D/3D perovskite emissive layer. The mixed 2D/3D perovskite layer induces exciton confinement and beneficially influences the electron/hole distribution inside the perovskite layer. By tuning the electron injection to match the hole injection in such active layer, a nearly flat EQE for J = 0.1–200 mA cm?2, a reduced EQE roll‐off until J = 250 mA cm?2, and a half‐lifetime of ≈47 h at J = 10 mA cm?2 is reached. A model is also proposed to explain these improvements that account for the spatial electron/hole distributions.  相似文献   
5.
Recently, alkali-activated materials have shown great potential for use in the construction industry. The aim of this research was to study the properties of alkali-activated clay and the effect of incorporating AlF3 production waste from a fertilizer production plant. The AlF3 production waste, which was rich in alumina and silica, contributed to improved mechanical behaviour for all the mixtures investigated. This demonstrated the potential for use of this waste material. It was also noted that the dosage of Na2O, Al2O3, and SiO2 are significant factors that influence the binding mechanism and properties of alkali-activated clay samples. The raw materials, precursors, and alkali-activated samples were investigated by X-ray diffraction, fluorescence spectroscopy, and scanning electron microscopy. The highest compressive strength (17.50?MPa) was observed for alkali-activated clay samples containing 25% AlF3 production waste, with an increase in compressive strength of up to 64% compared to the samples without the AlF3 production waste. Deleterious natrite was shown to form in the samples without the production waste, which could be the reason for the lower observed mechanical properties of such samples.  相似文献   
6.
Heterogeneous organic-inorganic halide perovskites possess inherent non-uniformities in bandgap that are sometimes engineered and exploited on purpose, like in quasi-2D perovskites. In these systems, charge carrier and excitation energy migration to lower-bandgap sites are key processes governing luminescence. The question, which of them dominates in particular materials and under specific experimental conditions, still remains unanswered, especially when charge carriers comprise excitons. In this study transient absorption (TA) and transient photoluminescence (PL) techniques are combined to address the excited state dynamics in quasi-2D and other heterogeneous perovskite structures in broad temperature range, from room temperature down to 15 K. The data provide clear evidence that charge carrier transfer rather than energy migration dominates in heterogeneous quasi-2D perovskite films.  相似文献   
7.
A large amount of natural resources and energy is wasted during and after the building construction process which might cause environmental problems such as climate changes. In order to achieve higher standards of environmental protection a range of building assessment systems has been established. However, they are mostly connected with the efficiency of an environmental protection and consumption of resources. Only few of them have limited possibilities to assess social and economic sustainability. A sustainable building includes aspects of environment, economy and society and therefore requirements to its assessment systems should be complex. We suggest that sustainability principles, that is, environmental, social and economic sustainability, should be estimated in the same equal weightings. The authors of this article created a model for assessing the sustainability for recreational buildings. Our model was created, in collaboration with experts, using breakdown, compensation and the analytic hierarchy process methods. The sustainability of Druskininkai Snow Arena (Lithuania) was assessed using a sustainability assessment system based on the proposed model.  相似文献   
8.
Organic bulk heterojunction solar cells are often regarded as near‐equilibrium devices, whose kinetics are set by well‐defined charge carrier mobilities, and relaxation in the density of states is commonly ignored or included purely phenomenologically. Here, the motion of photocreated charges is studied experimentally with picosecond time resolution by a combination of time‐resolved optical probing of electric field and photocurrent measurements, and the data are used to define parameters for kinetic Monte Carlo modelling. The results show that charge carrier motion in a prototypical polymer:fullerene solar cell under operational conditions is orders of magnitude faster than would be expected on the basis of corresponding near‐equilibrium mobilities, and is extremely dispersive. There is no unique mobility. The distribution of extraction times of photocreated charges in operating organic solar cells can be experimentally determined from the charge collection transients measured under pulsed excitation. Finally, a remarkable distribution of the photocurrent over energy is found, in which the most relaxed charge carriers in fact counteract the net photocurrent.  相似文献   
9.
The erosion kinetics under irradiation by Ar ions extracted from plasma by 300 V negative bias voltage of 2 μm-thick W film contaminated by redeposited carbon atoms was investigated in dependence on the Ar-working gas pressure in the range 0.2-10 Pa at 410 K. The erosion and deposition parameters were deduced from the dependence of the sample's weight change on irradiation time. Two regimes were distinguished which contributed differently to the carbon transport efficiency from the surface towards the bulk, namely, the weight-decrease regime, when sputtering prevailed redeposition, and the weight-increase regime, when redeposition prevailed sputtering. Carbon distribution profiles measured by the SIMS technique showed that carbon was efficiently transported into the W film when its surface was not covered by a continuous amorphous C layer. The C transport efficiency decreased when W was covered by a continuous amorphous C film.These results were qualitatively explained by dynamic mixing of atoms on the surface. It was assumed that surface chemical potential increased under irradiation and that C adatoms were driven into grain boundaries of nanocrystalline W film. The continuous amorphous C film on tungsten blocked the access of activated C atoms to the grain boundaries.  相似文献   
10.
ZrO2-SiO2 and Nb2O5-SiO2 mixture coatings as well as those of pure zirconia (ZrO2), niobia (Nb2O5), and silica (SiO2) deposited by ion-beam sputtering were investigated. Refractive-index dispersions, bandgaps, and volumetric fractions of materials in mixed coatings were analyzed from spectrophotometric data. Optical scattering, surface roughness, nanostructure, and optical resistance were also studied. Zirconia-silica mixtures experience the transition from crystalline to amorphous phase by increasing the content of SiO2. This also results in reduced surface roughness. All niobia and silica coatings and their mixtures were amorphous. The obtained laser-induced damage thresholds in the subpicosecond range also correlates with respect to the silica content in both zirconia- and niobia-silica mixtures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号