首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   1篇
电工技术   2篇
综合类   1篇
无线电   2篇
一般工业技术   1篇
自动化技术   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
排序方式: 共有7条查询结果,搜索用时 93 毫秒
1
1.
为精确控制超光滑表面抛光过程中抛光液的温度,根据温控基本原理设计温控装置结构.将用UG建立的温控装置模型导入GAMBIT中进行温度场分析.针对装置内部温度分布不均匀问题,对其结构进行优化:在装置内加入导热隔板将其分为工作区和调温区,制冷器被置于调温区内;将温控装置的外形结构加入过渡圆角.结果表明:优化后的温控装置形成内外环流,工作区温度波动范围为±0.01℃,温度分布均匀对称,满足高精度温控的恒温和匀温要求.  相似文献   
2.
描述了射流抛光加工中各种重要参数与材料去除率的相互关系,如加工时间、磨粒浓度、磨粒直径、微粒速度以及扫描运动的影响.-部分实验证明了去除极少量的材料(少于1 nm/min)的可能性.在理论和实验上将定点抛光与相对移动情况下得到的去除点进行对比.最后通过理论和实验证明,材料是以塑性方式去除的.  相似文献   
3.
高精度液体温控难点分析及解决方法述评   总被引:1,自引:0,他引:1  
随着精密光学加工要求的提高,机床热变形已成为制约精度等级进一步提高的关键因素,而与机床直接接触的相关液体的温控也越来越凸显其重要位置。本文首先深入分析了液体温控的难点,然后针对这些难点,从温度控制方法、测温元件补偿算法和温控结构等方面分别阐述了目前常用解决方法,同时给予了客观的评价。最后对高精度液体温控的关键问题进行了总结,并为进一步研究指明了方向。  相似文献   
4.
为了满足深紫外光刻物镜对薄膜的要求,得到低损耗、高稳定性、长寿命的深紫外薄膜,需要选用适当的镀膜工艺方法。分别选取了离子束溅射法、热舟蒸发法和电子束蒸发法优化后的最佳工艺参量,在融石英基底上使用3种方法镀制了单层LaF3薄膜。首先,利用光度法得出3种方法镀制LaF3薄膜在185nm~800nm范围内的折射率n和消光系数k。然后,采用原子力显微镜对薄膜表面粗糙度进行了测量。最后,薄膜的微结构使用X射线衍射仪进行了分析。结果表明,离子束溅射镀制的LaF3薄膜折射率最高、表面粗糙度最低,但吸收较大;电子束蒸发法虽然吸收最小,但是折射率偏低且表面粗糙度较高;热舟蒸发法镀制的LaF3薄膜无论折射率、消光系数还是表面粗糙度都处于3种方法中间位置。综合各项指标,热舟蒸发法最适合于沉积深紫外LaF3薄膜。  相似文献   
5.
为了满足足式机器人动态性能与环境适应性的要求,将测力元件与弹性元件相结合,提出了一种可用于机器人足部的柔性传感装置。通过对其力学模型的分析,给出了三维力/力矩计算与底面倾角估算方法。同时针对装置要求,完成了基于ARM的检测系统的软硬件设计与实现方案,并对装置关键参数进行了标定。针对传感器的实验表明,在X、Y倾角小于20°的情况下,装置综合误差小于3%,可满足足部测量的需要。该装置体积小,精度高,反馈信息丰富,可为足式机器人的步态优化提供重要数据。  相似文献   
6.
在光学元件的数控加工中,面形精度是工艺流程的关键指标,而工件的安装误差是影响面形精度的重要因素。基于数控机床的在线检测功能研究了球面光学元件的安装倾斜误差自动补偿问题。首先,基于球面工件安装倾斜的几何模型,将误差的补偿问题转化为工件的球心位置检测问题。然后,根据球面工件测点的同心圆布置算法以及法向探测方式实现球面检测,进而应用最小二乘拟合算法计算球心位置。最后,在口径为280 mm,曲率半径为519.796 mm的凹球面光学元件上进行了验证实验,补偿前后表面最大偏移误差由621.6μm降低至2.8μm。实验结果表明:应用所述算法,可以高效地实现球面安装误差高精度自动补偿。  相似文献   
7.
纳米颗粒胶体动压空化射流抛光技术初探(英文)   总被引:1,自引:0,他引:1  
为了高效加工优质的超光滑表面,提出了一种超光滑表面加工的新方法:纳米颗粒胶体动压空化射流抛光(HCJP).此法利用纳米颗粒与工件表面之间的界面化学反应实现工件表面的原子级去除,并且利用空化射流中的水力空化现象强化加工过程中的机械与化学作用以提高加工效率.设计了HCJP原型装置,并在此基础上对HCJP技术进行了初步实验.结果表明,较低的系统压力有利于得到优质的表面,使用该方法能在K9玻璃上得到粗糙度值在1 nm左右的超光滑表面,证明此技术可以广泛应用于超光滑表面的加工.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号