首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
电工技术   2篇
化学工业   5篇
机械仪表   1篇
无线电   6篇
一般工业技术   2篇
自动化技术   3篇
  2021年   2篇
  2020年   1篇
  2017年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   3篇
  2003年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
A combined input and crosspoint queued (CICQ) switch is receiving significant attention to be the next generation high speed packet switch for its scalability; however, a multi-cabinet implementation of a combined input and crosspoint queued (CICQ) switch unavoidably introduces a large round-trip time (RTT) latency between the line cards and switch fabric, resulting a large crosspoint (CP) buffer requirement. In this paper, virtual crosspoint queues (VCQs) that significantly reduces the CP buffer requirement of the CICQ switch is investigated. The VCQs unit resides inside the switch fabric, is dynamically shared among virtual output queues (VOQ) from the same source port, and is operated at the line rate, making the implementation practical. A threshold-based exhaustive round-robin (T-ERR) arbitration is employed to reduce buffer hogging at VCQ. The T-ERR at VCQ and CP arbiters serves packets residing in a longer queue more frequently than packet residing in a shorter queue. Consequently, the T-ERR, drastically increases the throughput of the CICQ switch with small CP buffers. A multi-cabinet implementation of CICQ switch do not support multicasting traffic well since a combination of small CP buffer in the switch fabric and a large RTT latency between the line cards and switch fabric results in non-work conservation of the intra-switch link. Deployment of multicast FIFO buffer between the input buffer and CP buffer shows a promise. With its ability to achieve high throughput independent of RTT and switch port size, the integration of the VCQ architecture and T-ERR scheduler to the CICQ switch is ideal for supporting ever-increasing Internet traffic that requires higher data rate, larger switch size, and efficient multicasting.  相似文献   
2.
Oxidation reactions at Si(001) surfaces have been studied via real‐time in situ photoemission spectroscopy with synchrotron radiation for chemical bonding states of Si and O atoms and mass spectrometry for desorption of SiO molecules with supersonic O2 molecular beams in a temperature region from 900 K to 1300 K. In our previous studies, the SiO desorption yield decreased with increasing incident energy in a temperature region from 900 K to 1000 K. In that case, the time evolutions of Si 2p photoemission spectra showed that SiO2 structure on the surface was easily formed by the action of larger incident energy and the increased SiO2 coverage correlated with the decreased SiO desorption yield. In this study, simultaneous measurements of Si 2p photoemission spectra and SiO desorption yield revealed that the decrease of SiO correlated with the increase of Si2+ component, and the SiO desorption was terminated at the oxide thickness of 0.22 nm. These facts suggest that the SiO desorption takes place at the topmost Si dimers and a precursor for SiO desorption is a so‐called T site, in which O atoms are bonding with the dangling bonds of the dimers. Consequently, M1 and M2 in the Dual‐Oxide‐Species (DOS) model have been clarified to be a T site and a Si2+ state, respectively. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 164(3): 60–68, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20678  相似文献   
3.
Zhao  Yue  Yoshigoe  Kenji  Xie  Mengjun  Bian  Jiang  Xiong  Ke 《The Journal of supercomputing》2020,76(3):1850-1879

In order to process complex and large-scale graph data, numerous distributed graph-parallel computing platforms have been proposed. PowerGraph is an excellent representative of them. It has exhibited better performance, such as faster graph-processing rate and higher scalability, than others. However, like in other distributed graph computing systems, unnecessary and excessive communications among computing nodes in PowerGraph not only aggravate the network I/O workload of the underlying computing hardware systems but may also cause a decrease in runtime performance. In this paper, we propose and implement a mechanism called L-PowerGraph, which reduces the communication overhead in PowerGraph. First, L-PowerGraph identifies and eliminates the avoidable communications in PowerGraph. Second, in order to further reduce the required communications L-PowerGraph proposes an edge direction-aware master appointment strategy, in which L-PowerGraph appoints the replica with both incoming and outgoing edges as master. Third, L-PowerGraph proposes an edge direction-aware graph partition strategy, which optimally isolates the outgoing edges from the incoming edges of a vertex during the graph partition process. We have conducted extensive experiments using real-world datasets, and our results verified the effectiveness of the proposed mechanism. For example, compared with PowerGraph under Random partition scenario L-PowerGraph can not only reduce up to 30.5% of the communication overhead but also cut up to 20.3% of the runtime for PageRank algorithm while processing Live-journal dataset. The performance improvement achieved by L-PowerGraph over our precursor work, LightGraph, which only reduces the synchronizing communication overhead, is also verified by our experimental results.

  相似文献   
4.
Parallel applications suffer from I/O latency. Pre-execution I/O prefetching is effective in hiding I/O latency, in which a pre-execution prefetching thread is created and dedicated to fetch the data for the main thread in advance. However, existing pre-execution prefetching works do not pay attention to the relationship between the main thread and the pre-execution prefetching thread. They just simply pre-execute the I/O accesses using the prefetching thread as soon as possible failing to carefully coordinate them with the operations of the main thread. This drawback induces a series of adverse effects on pre-execution prefetching such as diminishing the degree of the parallelism between computation and I/O, delaying the I/O access of main threads, and aggravating the I/O resource competition in the whole system. In this paper, we propose a new method to overcome this drawback by scheduling the I/O operations among the main threads and the pre-execution prefetching threads. The results of extensive experiments on four popular benchmarks in parallel I/O performance area demonstrate the benefits of the proposed approach.  相似文献   
5.
In some wireless sensor network applications, sensor nodes will be deployed in harsh communication environments. In such environments, the deployment may not be adequately controlled, and nodes may have to communicate with a single destination node. For nodes to alert the destination on critical data that has been sensed, in addition to the harsh communication environment, contention resulting from both the deployment and network density must be appropriately overcome. In this paper, we create theoretical models for the behavior of Timeout-MAC (T-MAC) protocol, and evaluate five possible solutions, each designed to be easy to implement on a device by simply tuning T-MAC parameters, so as to overcome these environment-specific issues and effectively alert the destination to critical data. Our results indicate that slight changes to the behavior of the network can improve the awareness of the destination to critical regions in the environment, and that these changes have different levels of effectiveness at different network densities.  相似文献   
6.
Supramolecular hydrogels formed by self-assembly of low-molecular-weight amphiphiles (hydrogelators) have attracted significant attention, as smart and soft materials. However, most of the observed stimuli-responsive behaviour of these supramolecular hydrogels are limited to gel–sol transitions. In this study, we present bola-amphiphilic glycosylated lipopeptide-type supramolecular hydrogelators that exhibit reversible thermochromism along with a gel–sol transition. The bola-amphiphiles have mono-, di-, tri- or tetra-phenylalanine (F) as a short peptide moiety. We investigate and discuss the effects of the number of F residues on the gelation ability and the morphology of the self-assembled nanostructures.  相似文献   
7.
We report the results of a study of the natural oxidation of Cu3Au(110) with high‐resolution X‐ray photoemission spectroscopy in conjunction with synchrotron radiation. The clean surface of Cu3Au(110) is terminated with 50% Au and 50% Cu atoms. After natural oxidation in the air, Cu atoms segregate on the surface and produce Cu‐oxide. As a result, Au atoms move into the bulk. Au atoms below the oxide reduce the diffusion of O atoms farther into bulk and limit the oxide thickness. The face dependence of natural oxidation indicates that the diffusion of Cu atoms also contributes to oxide formation. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 175(4): 43–47, 2011; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21149  相似文献   
8.
Interface defects related to negative-bias temperature instability (NBTI) in an ultrathin plasma-nitrided SiON/Si1 0 0 system were characterized by using conductance–frequency measurements, electron-spin resonance measurements, and synchrotron radiation X-ray photoelectron spectroscopy. It was confirmed that NBTI is reduced by using D2-annealing instead of the usual H2-annealing. Interfacial Si dangling bonds (Pb1 and Pb0 centers) were detected in a sample subjected to negative-bias temperature stress (NBTS). Although we suggest that NBTS also generates non-Pb defects, it does not seem to generate nitrogen dangling bonds. These results show that NBTI of the plasma-nitrided SiON/Si system is predominantly due to Pb depassivation. Plasma nitridation was also found to increase the Pb1/Pb0 density ratio, modify the Pb1 defect structure, and increase the latent interface trap density by generating Si suboxides at the interface. These changes are likely to be the causes of NBTI in ultrathin plasma-nitrided SiON/Si systems.  相似文献   
9.
In order to investigate the detailed structure of a banded spherulite observed by polarized light microscopy, we develop a new image processing technique that can visualize defects (band defects) in the concentric bands and determine the growing directions of crystals everywhere in a spherulite. This technique is applied to a banded spherulite of poly(vinylidene fluoride) and reveals that the spherulite has many defects (colliding defects), on which crystals collide with neighboring ones. It is found that the band defects are included in the colliding defects. The number of colliding defects increases linearly with the radius to give a constant density. Between the defects, the orientations of crystals are well correlated to form a coherent area. On the basis of these findings, a mechanism of the formation of the coherent band pattern is discussed.  相似文献   
10.
Previously, we have revealed that the miR-130 family (miR-130b, miR-301a, and miR-301b) functions as an oncomiR in bladder cancer. The pharmacological inhibition of the miR-130 family molecules by the seed-targeting strategy with an 8-mer tiny locked nucleic acid (LNA) inhibits the growth, migration, and invasion of bladder cancer cells by repressing stress fiber formation. Here, we searched for a functionally advanced target sequence with LNA for the miR-130 family with low cytotoxicity and found LNA #9 (A(L)^i^i^A(L)^T(L)^T(L)^G(L)^5(L)^A(L)^5(L)^T(L)^G) as a candidate LNA. LNA #9 inhibited cell growth in vitro and in an in vivo orthotopic bladder cancer model. Proteome-wide tyrosine phosphorylation analysis suggested that the miR-130 family upregulates a wide range of receptor tyrosine kinases (RTKs) signaling via the expression of phosphorylated Src (pSrcTyr416). SILAC-based proteome analysis and a luciferase assay identified protein tyrosine phosphatase non-receptor type 1 (PTPN1), which is implicated as a negative regulator of multiple signaling pathways downstream of RTKs as a target gene of the miR-130 family. The miR-130-targeted LNA increased and decreased PTPN1 and pSrcTyr416 expressions, respectively. PTPN1 knockdown led to increased tumor properties (cell growth, invasion, and migration) and increased pSrcTyr416 expression in bladder cancer cells, suggesting that the miR-130 family upregulates multiple RTK signaling by targeting PTPN1 and subsequent Src activation in bladder cancer. Thus, our newly designed miR-130 family targeting LNA could be a promising nucleic acid therapeutic agent for bladder cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号