首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
电工技术   6篇
无线电   1篇
冶金工业   2篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2007年   1篇
  2005年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Magnetic Resonance Materials in Physics, Biology and Medicine - To show the relevance of a simple finite difference transmission line model to help design safe implanted cables in 1.5T MRI’s...  相似文献   
2.
In vivo 31Phosphorus magnetic resonance spectroscopy (31P-MRS) permits evaluation of dynamic changes of individual phosphorus-containing metabolites in the liver parenchyma, such as phosphomonoester (PME), adenosine triphosphate, and inorganic phosphate (Pi). Intravenous fructose load alters phosphorus metabolites and allows assessment of liver function by 31P-MRS. 31P-MRS data obtained in alcoholic liver disease are however inconclusive. To study the hypothesis that fructose load can be used to investigate metabolic effects of ethanol ingestion, the interaction of different metabolites--i.e., fructose and ethanol--were followed in vivo. Using a 1.5 Tesla magnetic resonance system, six healthy volunteers were examined in three sessions each: a session after administration of (a) fructose only (250 mg/kg) was compared with (b) fructose load after ethanol ingestion (0.8 g/kg). A control experiment (c) was done after ethanol only. Spectra were acquired using one-dimensional chemical shift imaging with a temporal resolution of 5 min. Following a fructose load, the concomitant uptake of ethanol showed drastic changes of individual metabolic steps of the hepatic metabolism (averages +/- standard deviation). While the velocity of the net formation of PME (relative increase 0.46 +/- 0.11 without ethanol vs. 0.61 +/- 0.25 with ethanol) and the use of adenosine triphosphate (-0.13 +/- 0.03 vs. -0.16 +/- 0.03) and Pi (-0.022 +/- 0.009 vs. -0.021 +/- 0.004) were not significantly affected by ethanol uptake, a significant (p < 0.01) reduction of PME degradation (31.3 +/- 9.4 vs. 61.9 +/- 16.9 relative total area) and absence of an overshoot for Pi (10.5 +/- 4.9 vs. -7.1 +/- 5.3 relative area 13 min to 43 min) was observed after ethanol administration. Dynamic 31P-MRS allows the observation of individual steps of hepatic metabolism in situ; fructose metabolism in the human liver is slowed down by concomitant ethanol ingestion after the phosphorylation step of fructose. This could be explained by inhibition of aldolase rather than ethanol-induced changes of the hepatic redox state. Fructose load can be used to study effects of alcohol ingestion and might therefore be useful in patients with alcoholic liver disease.  相似文献   
3.

Purpose

To evaluate the function of an active implantable medical device (AIMD) during magnetic resonance imaging (MRI) scans. The induced voltages caused by the switching of magnetic field gradients and rectified radio frequency (RF) pulse were measured, along with the AIMD stimulations.

Materials and methods

An MRI-compatible voltage probe with a bandwidth of 0–40 kHz was designed. Measurements were carried out both on the bench with an overvoltage protection circuit commonly used for AIMD and with a pacemaker during MRI scans on a 1.5 T (64 MHz) MR scanner.

Results

The sensor exhibits a measurement range of?±?15 V with an amplitude resolution of 7 mV and a temporal resolution of 10 µs. Rectification was measured on the bench with the overvoltage protection circuit. Linear proportionality was confirmed between the induced voltage and the magnetic field gradient slew rate. The pacemaker pacing was recorded successfully during MRI scans.

Conclusion

The characteristics of this low-frequency voltage probe allow its use with extreme RF transmission power and magnetic field gradient positioning for MR safety test of AIMD during MRI scans.
  相似文献   
4.
A system was developed for real-time electrocardiogram (ECG) analysis and artifact correction during magnetic resonance (MR) scanning, to improve patient monitoring and triggering of MR data acquisitions. Based on the assumption that artifact production by magnetic field gradient switching represents a linear time invariant process, a noise cancellation (NC) method is applied to ECG artifact linear prediction. This linear prediction is performed using a digital finite impulse response (FIR) matrix, that is computed employing ECG and gradient waveforms recorded during a training scan. The FIR filters are used during further scanning to predict artifacts by convolution of the gradient waveforms. Subtracting the artifacts from the raw ECG signal produces the correction with minimal delay. Validation of the system was performed both off-line, using prerecorded signals, and under actual examination conditions. The method is implemented using a specially designed Signal Analyzer and Event Controller (SAEC) computer and electronics. Real-time operation was demonstrated at 1 kHz with a delay of only 1 ms introduced by the processing. The system opens the possibility of automatic monitoring algorithms for electrophysiological signals in the MR environment.  相似文献   
5.
6.
7.
4. Conclusions Combined respiratory and cardiac triggering improves the localization accuracy and spectral quality in cardiac1H-MRS dramatically leading to substantially increased spectral reproducibility. The best practical realization of double triggering turned out to be the use of the ECG amplitude when making use of the fact that it is modulated by respiration. In spite of the spectral quality achieved in most subjects, we still fail to record satisfactory spectra in a minority of subjects. The reasons for this are not understood at present but must be some particulars of either a given subject or the experimental setup. The cardiac1H-MR spectra contain quantifiable contributions from creatine, TMA, lipids, and probably taurine. It is possible that the spectral contributions of creatine are subject to dipolar coupling similar to the observations for skeletal muscle.  相似文献   
8.
Electrocardiogram (ECG) acquisition is still a challenge as gradient artefacts superimposed on the electrophysiological signal can only be partially removed. The signal shape of theses artefacts can be similar to the QRS-complex, causing possible misinterpretation during patient monitoring and false triggering/gating of the MRI. For their real-time suppression, an adaptive filter is proposed. The adaptive filter is based on the noise-canceller configuration with LMS coefficient updates. The references of the noise canceller are the three gradient signals that are acquired simultaneously with the noisy ECG. Tests were done on patients, on volunteers and using an MR-safe ECG simulator. The noise cancellers performance was measured offline, simulating real-time processing by point-by-point operations. To create worst-case scenarios, clinical sequences with strong- and fast-switching gradients have been chosen. The noise-cancelling filter reduces the gradient artefacts peak amplitudes by 80–99% after adaptation, without changing the desired ECG signal shape. The estimated reduction of total average power of the MR gradient artefacts is 62–98%. The proposed filter is capable of reducing artefacts due to strong- and fast-switching gradients in real-time applications and worst-case situations. The quality of the ECG is sufficiently high that a standard one-lead QRS-detector can be used for gating/triggering the MRI. For permanent patient monitoring, further improvements are needed.  相似文献   
9.
Purpose: Two ultrafast phase-contrast (PC) data acquisition strategies, multishot echo-planar imaging (EPI)-PC and segmentedk-space fast gradient-echo PC (FASTCARD-PC) were evaluated with regard to their measurement accuracy. Materials and Method: Flow measurements of the ascending and descending aorta were acquired in 10 healthy volunteers with an electrocardiogram (ECG)-triggered eight-shot EPI-PC sequence (TR/TE/flip 16/7.4/45°, 32-ms flow-phase interval, 2×2 mm in plane resolution), and FASTCARD-PC (six it-lines per band, TR/TE/flip 11/6.1/45°, 32-ms flow-phase interval, 2 × 1 mm in plane resolution). These were compared to flow-volume data acquired with conventional cine-PC (TR/TE/flip 24/7/45°, 48-ms flow-phase interval, 2 × 1 mm in plane resolution). Using cine-PC as a gold standard, the measurement accuracy of FASTCARD-PC and EPI-PC were determined. Results: Both EPI-PC and FASTCARD-PC significantly reduced data acquisition times compared to cine PC. EPI-PC flow measurements correlated well with aortic cine-PC flow-volume determinations (r=0.98). Reflecting poorer temporal resolution, FASTCARD-PC measurements were less accurate (p<0.05), evidenced by poor correlation with cine-PC data (r=0.62). Conclusion: Ultrafast PC measurements are possible. In contrast to the segmentedk-space PC technique, which is limited in temporal resolution, multishot EPI-PC provides high measurement accuracy in pulsatile vessels while keeping the image acquisition interval short enough for a comfortable breath-hold.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号