首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   3篇
  国内免费   1篇
化学工业   5篇
石油天然气   4篇
  2024年   1篇
  2022年   2篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有9条查询结果,搜索用时 593 毫秒
1
1.
为了满足清洁汽油生产的需要,开发了一种催化裂化汽油预加氢催化剂。在氢分压为2.2 MPa,体积空速为3.0 h-1,氢油体积比为10∶1,反应温度为110℃条件下对催化剂进行了评价。结果表明,加氢产品的硫醇转化率为91.5%,二烯转化率为81.2%,加氢选择性为98.7%。评价结果显示开发的催化裂化汽油预加氢催化剂具有良好的硫醇、双烯加氢活性、选择性以及加工原料的适应性。  相似文献   
2.
人类生产生活对塑料制品日益增长的需求使得塑料废弃物迅速增加,由此引起的环境问题和社会问题亟待解决。本文综述了碳中和背景下国内外废塑料裂解法回收进展,从废塑料裂解催化剂、废塑料裂解反应器、废塑料与其他固废共裂解三个方面对废塑料裂解技术进展进行总结,归纳了国内外塑料回收企业和石油石化企业在废塑料裂解回收方面的进展,分为裂解法制油和裂解法制化学品两个方面。阐明了废塑料回收在节约能源、碳减排和经济性方面的意义,指出国内废塑料裂解法回收存在法规缺失、废塑料分类不清晰、产业链条不完善、相关学术研究不深入等问题,提出国内石油石化企业应从全生命周期角度出发对废塑料进行裂解法回收处理,结合上下游产业链,分阶段实施废塑料裂解产油品路线和产化学品路线。  相似文献   
3.
以直馏柴油和催化裂化柴油为原料,选用柴油加氢精制催化剂与柴油缓和加氢裂化催化剂的复合催化体系,采用固定床双反应器串联、一次通过工艺进行加氢裂化转化实验。结果表明:在直馏柴油加氢裂化多产乙烯裂解原料过程中,若能将重石脑油馏分中低于90 ℃的轻组分,以及柴油馏分中高于250 ℃馏分段分离出来,可有效提高乙烯裂解原料的品质。在催化裂化柴油加氢裂化生产高辛烷值汽油和高十六烷值柴油过程中,与大于220 ℃馏分相比,200~220 ℃馏分的密度和链烷烃质量分数较低,收率约为前者的16.4%;200~220 ℃馏分单环芳烃质量分数较高,可以作为回炼组分用以提高汽油中芳烃质量分数。  相似文献   
4.
采用高压釜对Hβ沸石催化剂的萘异丙基化催化反应性能进行评价。系统考察了溶剂用量、异丙醇与萘的物质的量比、Hβ沸石用量、反应温度及反应时间等因素对异丙基化反应的影响,优化了反应条件。实验结果表明,合成2,6-二异丙基萘(2,6-DIPN)适宜的反应条件是:溶剂十氢萘用量25 mL·(0.05 mol-萘)-1,n(异丙醇)∶n(萘)=2.5∶1,催化剂用量15%,反应温度270 ℃,反应时间6 h,此时萘的转化率达66.41%,DIPN及2,6-DIPN的收率分别达到18.72%和3.41%,同时2,6-DIPN和2,7-DIPN的比值达到1.56。覆硅改性Hβ沸石,在基本不改变孔道性能的前提下,有效钝化其外表面酸性位,从而改善其催化萘异丙基化反应的综合性能。硅油沉积量为0.4 mL·g-1时,萘转化率81.21%,2,6-DIPN收率7.60%,2,6-DIPN与2,7-DIPN的比值保持在1.52的较高水平。  相似文献   
5.
采用热重法对聚氯乙烯(PVC)塑料进行热解实验,研究其热分解特性;采用Friedman法和?kvára-?esták模型计算PVC塑料热解反应的活化能和机理函数;采用气相色谱-质谱联用(GC-MS)、傅里叶红外变换光谱(FTIR)和X射线衍射光谱(XRD)等手段分别测定热解油、热解气和热解残渣组成。实验结果表明:PVC塑料的热解反应主要分为2个阶段,第一阶段热解发生在250~390℃之间,质量损失约为65%,其平均活化能为152.58 kJ/mol,热解反应机理为二级化学反应;第二阶段热解发生在390~560℃之间,质量损失约为29%,其平均活化能为231.52 kJ/mol,热解反应机理为随机成核和随后生长模型。GC-MS结果表明:PVC塑料的热解油气组成主要包括烷烃、烯烃、含氯有机物和芳烃化合物,热解残渣主要由石墨碳组成。研究结果可为废塑料脱氯和资源化利用提供理论基础参考。  相似文献   
6.
烃重组技术和催化重整技术都可以生产高辛烷值汽油调和组分,采用气相色谱PONA分析法对烃重组汽油和催化重整汽油分别进行组成分析,并对数据结果进行对比讨论;PONA分析显示,虽然二者都是芳烃质量分数大于70%的高芳烃含量汽油,但在组成分布上存在明显不同;通过结果判断,烃重组汽油的芳烃集中在C_(8)~C_(10)范围,重整汽油中的芳烃组分宽泛存在于C_(6)~C_(11)范围;PONA谱图表明,在保留时间(60~100)min,重整汽油各组分峰几乎全部为尖锐且分离清晰的芳烃峰,而烃重组汽油谱图类似精制石脑油与重整汽油的峰形叠加,不仅包含重整汽油尖锐峰形的芳烃组分,也包含精制石脑油低矮杂多峰形的非芳烃组分。  相似文献   
7.
采用静态合成法制备了Beta分子筛,并对分子筛进行组合改性。以改性分子筛为主要裂化组分、金属W-Ni为加氢组分,采用浸渍法制备新型加氢裂化催化剂,在中压条件下对所制备的加氢裂化催化剂进行活性评价和稳定性评价。结果表明,改性后的分子筛硅铝比达65,比表面积410 m~2/g,孔容0.65 m L/g,结晶度87%。所制备催化剂具有孔分布比较集中、加氢金属组分分散均匀、强酸比例适中、L酸比例高等特点。运转2 000 h后,反应温度提高了2℃,平均提温速率0.024℃/d。  相似文献   
8.
为了满足国Ⅴ、国Ⅵ排放标准清洁汽油生产需求,开发了一种富芳烃汽油深度加氢脱硫催化剂。通过在金属浸渍液中引入一定比例的有机络合剂制备了高脱硫活性的Ni-Mo/Al_2O_3催化剂,催化剂微反评价结果表明,在反应温度245℃、反应压力2.0 MPa、体积空速1.5h~(-1)、氢油体积比300的条件下,可以将某石化公司富芳烃汽油的硫质量分数从740μg/g降至小于5.0μg/g,脱硫率达99.3%,辛烷值损失在1.0个单位以内,催化剂表现出较高的加氢脱硫活性,满足工业装置清洁汽油生产要求。  相似文献   
9.
Co-Mo-Ni-W/γ-Al2O3柴油加氢精制催化剂的研制   总被引:1,自引:0,他引:1  
采用浸渍法制备Co-Mo-Ni-W/γ-Al2O3柴油加氢精制催化剂,考察了扩孔剂及焙烧温度对载体物化性能的影响和浸渍液的配制方法对其稳定性的影响。并考察了催化剂第1次浸渍后的焙烧温度以及3种催化剂的加氢精制活性。实验结果表明,在载体制备过程中适量加入扩孔剂,可得到孔分布集中、比表面积和孔容适中的载体;载体于550 ℃焙烧时,可制备出具有良好的孔分布和较高机械强度及较大的比表面积的催化剂;在低温条件下配制的浸渍液具有良好的稳定性和可溶性;催化剂第1次浸渍后于450 ℃条件下焙烧,可使催化剂中的各活性组分均匀分布于载体上; 通过催化剂的加氢活性评价,3种催化剂均具有良好的柴油加氢精制活性和工业应用前景。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号