首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
制备了以TiO2/Al2O3为载体的镍基双金属选择性加氢催化剂,并用于催化裂化轻汽油的选择性加氢反应。考察了反应工艺条件对催化剂性能的影响,得出最佳的反应条件为:压力为2.0 MPa,反应温度为80℃,氢油比为40(体积比),空速为5 h-1。催化裂化轻汽油中二烯烃转化率达到98%以上。制备的选择性加氢催化剂具有良好的活性和选择性,其可以在选择性加氢领域获得应用。  相似文献   

2.
《现代化工》2011,(Z1):408
一种高硫、高烯烃催化裂化汽油清洁化生产的方法,它是将全馏分催化裂化汽油进入选择性加氢,采用汽油加氢预处理催化剂进行加氢,通过加氢脱出小分子硫醇、硫醚、二硫化合物等活性硫化物,选择性加氢工艺条件为:氢分压  相似文献   

3.
余济伟  王童  姜海波  赵悦  贺新 《工业催化》2012,20(10):43-46
在分析催化裂化汽油硫和烯烃分布不均匀的基础上,对全馏分催化裂化汽油选择性预加氢后再分馏,开发出活性高和稳定性好的催化裂化汽油加氢脱硫催化剂及工艺技术。结果表明,产品汽油硫含量由196.2×10-6降至39.2×10-6,加氢脱硫率80.1%,硫醇由33.8×10-6降至5.95×10-6,烯烃体积分数较原料油降低了2.1个百分点, 研究法辛烷值损失0.5个单位,收率99.24%,可生产满足国Ⅳ清洁标准的汽油调和组分。  相似文献   

4.
Ni-Mg/Al2O3催化剂上催化裂化轻汽油的选择性加氢   总被引:1,自引:0,他引:1  
制备了以γ-Al2O3为载体的镍基双金属选择性加氢催化剂,并用于催化裂化轻汽油的选择性加氢反应。考察了载体焙烧温度、金属镍与镁的负载量对催化剂选择性加氢性能的影响。结果表明,适当高的焙烧温度降低了催化剂的比表面积和表面酸性,提高了催化剂的稳定性。助剂镁的加入有利于活性组分Ni的均匀分散,并进一步降低催化剂的表面酸性。在反应温度80℃、空速10h^-1、氢油体积比为10、压力1.5MPa的条件下,采用NI:(10%)-Mg(1.5%)/AL2O3催化剂,催化裂化轻汽油中二烯烃转化率达到98%以上。制备的选择性加氢催化剂具有良好的活性和选择性,可望在选择性加氢领域获得应用。  相似文献   

5.
以900℃焙烧的Al_2O_3为载体,用浸渍法制备了蛋壳型Ru催化剂,Ru的负载质量分数为3%,并对催化剂进行了BET和XRD表征。催化剂活性评价在高压微反装置上进行,以FCC汽油为原料,评价前催化剂预硫化。结果表明,400℃高温焙烧会造成Ru的烧结,不焙烧(仅120℃干燥6h)的催化剂具有较高活性,对于FCC汽油的选择性加氢脱硫,在300℃、2.0MPa、空速2h~(-1)和氢油体积比=200:1条件下,FCC汽油的加氢脱硫率达66.4%,烯烃加氢饱和率达24.7%,选择性因子仅为3.8。单组分Ru催化剂用于FCC汽油的加氢脱硫时有一定的选择性,但结果不理想。  相似文献   

6.
为满足日益严格的清洁汽油标准不断降低硫和烯烃含量的需求,国内外在汽油清洁化领域开展了大量的研究工作。本文综述了近年来相关研究开发工作的进展,概述了催化裂化汽油中硫化物和烯烃的分布及特点、各种烃类的辛烷值、各种烯烃的加氢反应活性及其对加氢脱硫反应的抑制作用,重点分析比较了国内外典型的催化裂化汽油清洁化工艺技术(包括选择性加氢脱硫工艺、选择性加氢脱硫-烯烃定向转化工艺、临氢吸附脱硫工艺以及选择性加氢脱硫-溶剂抽提组合工艺)的优缺点,简述了加氢脱硫催化剂的活性相模型及选择性加氢脱硫催化剂的研究开发现状,指出实现烯烃的定向转化将是未来催化裂化汽油清洁化技术的重点研发方向,以期为后续的研究开发提供参考。  相似文献   

7.
为满足国IV清洁汽油标准对车用汽油中硫质量分数的要求,采用中国石油天然气股份有限公司石油化工研究院开发的催化裂化汽油选择性加氢脱硫技术将一套10万t/a柴油加氢降凝装置改造成32万t/a催化裂化汽油选择性加氢脱硫装置。为了提高催化裂化汽油加氢脱硫的选择性,在本次改造中增设了催化裂化汽油分馏塔、预加氢反应器、冷氢箱等设施。改造后加氢脱硫装置的工业标定结果显示,催化裂化汽油的硫质量分数平均从339μg/g降到了64μg/g,烯烃质量分数从52.1%降到了46.3%,研究法辛烷值从92.0降到了91.2,仅仅损失0.8个单位。分析了催化裂化汽油加氢脱硫装置技术改造的特点、效果和存在的问题,可为国内其他类似装置的改造和建设提供经验和参考。  相似文献   

8.
催化裂化增产汽油是炼厂增产汽油的重要途径,而开发增产汽油裂化催化剂是增产汽油技术的关键。本文介绍了新型多产汽油催化裂化催化剂的设计思路及改性方法,开发出高活性和孔道开放的催化裂化催化剂。轻油微反和小型固定流化床评价结果表明,该催化剂具有较高的汽油选择性和具有较好的焦炭、干气选择性。与工业对比剂相比,其转化率提高1.42%、汽油选择性提高2.96%,产品分布良好,经济效益显著。  相似文献   

9.
主要进行了催化裂化轻汽油选择性加氢除二烯烃工艺条件优化研究,从反应温度、氢/油体积比和反应压力等3个方面考察了其对选择性加氢和3-甲基-1-丁烯异构为2-甲基-1-丁烯的异构化率的影响,确定选择性加氢的较优工艺条件为反应温度60℃、氢/油体积比30、反应压力1.5 MPa。在此基础上进行了选择性加氢催化剂1500 h寿命试验。试验数据表明,在1500 h的考察期内,催化剂表现出良好的活性稳定性。  相似文献   

10.
以催化裂化汽油中硫和烯烃分布不均匀为基础,采取全馏分FCC选择性预加氢后再分馏,得到了高活性、强稳定性的FCC加氢脱硫催化剂及其工艺技术。结果表明:产品汽油硫含量由186×10~(-6)降至9.35×10~(-6),加氢脱硫率95%,硫醇由14.5×10~(-6)降至6.45×10~(-6),烯烃体积分数较原料油降低了5.7个百分点,研究法辛烷值损失1.5个单位,液收98.75%,可生产满足国Ⅴ清洁标准的汽油调和组分。  相似文献   

11.
以大庆炼化催化裂化(FCC)汽油为原料,模拟大庆炼化汽油加氢装置工业生产情况,串联评价工业生产的GRDES-II技术配套系列催化剂(GDS-10/22/32/42)。结果表明,在全馏分FCC汽油经过反应温度125 ℃的预加氢催化剂GDS-22后,按照切割温度50 ℃将其切割为轻汽油(LCN)、重汽油(HCN),其中HCN依次经过反应温度分别为245 ℃和360 ℃的选择性加氢脱硫催化剂GDS-32和辛烷值恢复催化剂GDS-42后,与LCN进行调和。与FCC汽油原料相比,调和产品的硫含量由110.74 mg·kg-1降至6.65 mg·kg-1,脱硫率为94%,烯烃体积分数降低9.8%,芳烃体积分数增加1.9%,RON损失0.7个单位,满足大庆炼化国ⅥA汽油调和要求。  相似文献   

12.
以大庆炼化催化裂化(FCC)汽油为原料,模拟大庆炼化汽油加氢装置工业生产情况,串联评价工业生产的GRDES-Ⅱ技术配套系列催化剂(GDS-10/22/32/42)。结果表明,在全馏分FCC汽油经过反应温度125℃的预加氢催化剂GDS-22后,按照切割温度50℃将其切割为轻汽油(LCN)、重汽油(HCN),其中HCN依次经过反应温度分别为245℃和360℃的选择性加氢脱硫催化剂GDS-32和辛烷值恢复催化剂GDS-42后,与LCN进行调和。与FCC汽油原料相比,调和产品的硫含量由110.74 mg·kg~(-1)降至6.65 mg·kg~(-1),脱硫率为94%,烯烃体积分数降低9.8%,芳烃体积分数增加1.9%,RON损失0.7个单位,满足大庆炼化国ⅥA汽油调和要求。  相似文献   

13.
考察了催化裂化(FCC)汽油中硫化物和模型硫化物在OTA(Olefin To Aromatics)催化剂上的催化转化性能.结果表明FCC汽油硫化物总脱硫率为86.3 %,其中,硫醚和四氢噻吩的转化率都达到100 %,硫醇硫转化率96.6 %,噻吩硫转化率78.8 %,烷基噻吩转化率85.8 %,苯并噻吩转化率81.4 %.3-甲基噻吩在OTA催化剂上的转化产物中含有小分子(噻吩),异构硫化物(2-甲基噻吩),以及大分子异构硫化物(如2,5-二甲基噻吩、2,4-二甲基噻吩和2,3-二甲基噻吩).烷基噻吩和苯并噻吩硫化物在OTA催化剂上脱硫反应网络一方面含有直接加氢脱硫反应,另一方面经历歧化、异构化和裂解等反应.  相似文献   

14.
以加氢柴油为原料,选取催化裂化加工过程中常用的重油催化剂和多产丙烯催化剂,考察了加氢柴油在这两种类型催化剂上催化裂化时产物分布和产品性质的差异。实验结果表明,加氢柴油在重油催化剂有着更高的转化率和目的产物收率;但在多产丙烯催化剂上,产物选择性更优,并且氢转移反应得到减弱,液化气及汽油产品中烯烃含量升高;此外,相比于多产丙烯催化剂,重油催化剂上获得的汽油产品有着更高的芳烃含量,并且在未转化柴油组分中,饱和烃及单环芳烃含量显著降低,体现出重油催化剂对烃类较高的裂化性能。  相似文献   

15.
高硫FCC汽油加氢脱硫降烯烃DSRA技术开发   总被引:1,自引:1,他引:0  
在分析催化裂化汽油硫和烯烃分布不均匀的基础上,对催化裂化汽油进行轻、重组分分馏,开发了活性高和稳定性好的重馏分辛烷值恢复催化剂及FCC汽油加氢脱硫降烯烃DSRA技术。采用DSRA技术对高硫格尔木催化裂化汽油进行轻馏分脱硫醇、重馏分加氢脱硫和辛烷值恢复等改质处理,总脱硫率为94.1%,烯烃降至20%,辛烷值不损失,汽油收率97.83%,化学氢耗0.88%,可生产符合欧Ⅲ规范的清洁汽油。  相似文献   

16.
以改性氧化铝为载体,采用等体积浸渍法制备Ni/改性Al_2O_3催化剂。以FCC选择加氢脱硫后的重汽油馏分加正庚硫醇为原料,在100 m L固定床加氢评价装置上对所制备催化剂进行加氢脱硫改质活性评价。结果表明,加氢脱硫后重FCC汽油馏分在加氢脱硫醇过程中除脱硫醇和脱硫反应外,还存在烯烃加氢饱和反应、烯烃环化脱氢反应以及烯烃的异构化反应等,这些反应与工艺条件密切相关,并影响加氢生成油的辛烷值和改质效果。对所研制的重汽油馏分加氢脱硫醇改质催化剂适宜的工艺参数为:压力2. 0 MPa、反应温度340~360℃、反应氢油体积比200~250∶1、体积空速3. 5~4. 5 h-1。  相似文献   

17.
催化裂化汽油在多元沸石基催化剂上加氢改质研究   总被引:1,自引:0,他引:1  
采用浸渍法分别制备了以丝光沸石(HM)、Hβ和HZSM-5及其组合为载体的沸石基Ni-Mo-P催化剂,考察了载体组成对催化裂化汽油加氢改质反应性能的影响。结果表明,由适宜比例的三者组合得到的沸石基Ni-Mo-P催化剂具有良好的加氢异构化、脱硫、芳构化活性及稳定性,可在催化裂化汽油脱硫降烯烃的同时保证产品的辛烷值不降低。考察了工艺条件对三元沸石基Ni-Mo-P催化剂反应性能的影响。在温度300 ℃、氢油体积比350、液相体积空速2.5 h-1和反应压力1.5 MPa反应条件下,催化裂化汽油异构烷烃收率、芳烃收率、脱硫率及液相收率分别达41.9%、31.7%、51.0%和98.3% 。  相似文献   

18.
中低温煤焦油加氢改质工艺研究   总被引:6,自引:0,他引:6  
在小型固定床加氢装置上,用加氢精制催化剂和加氢裂化催化剂对陕北的中低温煤焦油进行加氢改质工艺研究.着重考察反应温度、反应压力、氢油体积比和液体体积空速对加氢效果的影响,得到了优化的工艺条件:反应压力14 MPa,反应温度390℃,氢油体积比1 600:1,液体体积空速0.25 h-1.加氢改质产品切割得到汽油、柴油和尾油馏分,分别占产物质量的9.82%,73.12%和16.43%.汽柴油馏分经过简单处理后可以得到合格的产品,加氢尾油可以作为优质的催化裂化或加氢裂化原料.  相似文献   

19.
催化裂化轻汽油在ZSM-5分子筛催化剂上裂化反应的研究   总被引:2,自引:0,他引:2  
刘博  刘冬梅  魏民  马骏  王海彦 《辽宁化工》2005,34(8):332-334
以ZSM-5分子筛为催化剂,在小型固定床反应器上,进行了催化裂化轻汽油的裂化反应。考察了反应温度和空速对催化裂化轻汽油裂化反应气液相收率和产品分布的影响。实验结果表明,ZSM-5分子筛催化剂具有较强的裂化活性和氢转移活性。在保证裂化转化率的条件下,提高反应温度和空速可以抑制催化剂上氢转移反应的发生。以ZSM-5分子筛为催化剂上的催化裂化反应中,温度、空速是影响转化率和选择性的重要因素,因此可以通过改变温度、空速来提高目的产物的选择性。但是,单纯依靠改善反应条件,不能使目的产物的收率和选择性达到理想的程度,还必须对催化剂进行改性。ZSM-5分子筛催化剂上催化裂化反应的研究为ZSM-5分子筛催化剂的进一步改性,及ZSM-5分子筛催化剂在轻汽油催化裂解和汽油改质方面的进一步应用提供了试验依据。  相似文献   

20.
选用自制Cu-Zn-Al催化剂对乙酸仲丁酯加氢反应进行考察。研究了反应温度、压力、体积空速、氢酯物质的量比等对其转化率和选择性的影响。结果表明:反应温度180~190℃,压力5~8MPa,体积空速0.25 h-1,氢油物质的量比≥60∶1,酯加氢转化率≥99.90%,目标产物选择性≥99.80%(仲丁醇+乙醇)。加氢产物经分离提纯可获得满足甲乙酮生产指标要求仲丁醇的同时副产增值乙醇,技术路线可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号