首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   16篇
电工技术   2篇
化学工业   82篇
金属工艺   3篇
机械仪表   1篇
建筑科学   8篇
能源动力   3篇
轻工业   19篇
水利工程   2篇
石油天然气   1篇
无线电   7篇
一般工业技术   38篇
冶金工业   10篇
自动化技术   8篇
  2021年   7篇
  2020年   4篇
  2019年   6篇
  2018年   2篇
  2017年   7篇
  2016年   9篇
  2015年   11篇
  2014年   10篇
  2013年   9篇
  2012年   14篇
  2011年   17篇
  2010年   5篇
  2009年   10篇
  2008年   12篇
  2007年   6篇
  2006年   14篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  1999年   3篇
  1997年   1篇
  1995年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1969年   1篇
  1963年   1篇
  1962年   2篇
  1961年   3篇
  1960年   2篇
  1957年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
1.
A consecutive competitive gas-liquid reaction is investigated using a Taylor bubble setup regarding the influence of fluid mixing in the bubble wake on yield and selectivity. The concentration fields behind a Taylor bubble are visualized and measured quantitatively with a novel time-resolved absorption imaging technique based on Beer Lamberts law and an integral selectivity is derived. In addition, the calculation of the local selectivity, often used in numerical approaches, is discussed and the existing experimental limits for its derivation are pointed out. Finally, an increase in selectivity of a competitive consecutive reaction for enhanced mixing is experimentally confirmed.  相似文献   
2.
Borrelli  Arianna  Wellmann  Janina 《NTM》2019,27(4):407-417
NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin -  相似文献   
3.
Journal of Porous Materials - Two mesoporous silica materials: MCM-41 and SBA-15 were applied as potential nanocarriers for poorly soluble drug—nimodipine. Drug incorporation was performed...  相似文献   
4.
5.
Cleavage of the invariant chain is the key event in the trafficking pathway of major histocompatibility complex class II. Cathepsin S is the major processing enzyme of the invariant chain, but cathepsin F acts in macrophages as its functional synergist which is as potent as cathepsin S in invariant chain cleavage. Dedicated low‐molecular‐weight inhibitors for cathepsin F have not yet been developed. An active site mapping with 52 dipeptide nitriles, reacting as covalent–reversible inhibitors, was performed to draw structure–activity relationships for the non‐primed binding region of human cathepsin F. In a stepwise process, new compounds with optimized fragment combinations were designed and synthesized. These dipeptide nitriles were evaluated on human cysteine cathepsins F, B, L, K and S. Compounds 10 (N‐(4‐phenylbenzoyl)‐leucylglycine nitrile) and 12 (N‐(4‐phenylbenzoyl)leucylmethionine nitrile) were found to be potent inhibitors of human cathepsin F, with Ki values <10 nM . With all dipeptide nitriles from our study, a 3D activity landscape was generated to visualize structure–activity relationships for this series of cathepsin F inhibitors.  相似文献   
6.
This article discusses thermal analysis of different molecular weight poly(2-ethylhexyl acrylates) synthesized by radical polymerization of 2-ethylhexyl acrylate. The main aim of this work was to investigate the thermal properties and degradation process of synthesized acrylic homopolymers and forming of thermal degradation products during their pyrolysis. As investigated method pyrolysis combined with gas chromatography was used. Poly(2-ethylhexyl acrylates) are used as plasticizers for pressure-sensitive adhesives applied in medical area.  相似文献   
7.
In this work we present studies on applicability of transition metal additives as sintering and electrical conductivity aids for cerium gadolinium oxide electrolyte. The nanosized Ce0.85Gd0.15O1.925 powder obtained by coprecipitation method was modified with Cr3+, Fe3+, Ni2+ or Cu2+ ions. Using high-intensity high-resolution X-ray powder diffraction data we have determined that Cr, Fe and Ni ions do not incorporate into the cerium gadolinium oxide surface or bulk when sintered at 1300 °C, but react with Gd ions to form Cr0.9Gd0.1O, GdFeO3 and GdNiO3 phases, while Cu incorporates in the material up to 0.7 mol% with a significant fraction of remaining material showing poorly crystalline CuO phase. The nanosized Ce0.85Gd0.15O1.925 material shows already improved sintering properties than previous reports but full sintering is not achieved below 1300 °C, however Cr, Fe and mainly Cu impregnation allows full sintering at 1300 °C. 0.5 mol% Ni impregnated material sintered at 1500 °C shows enhanced grain boundary conductivity that probably indicates that Ni incorporates into Ce0.84Gd0.15O1.925 above 1300 °C. The global results indicate, however, that optimization of ceria microstructure is at least of equal importance for sinterability and grain boundary conductivity than impregnation of the material with transition metal ions.  相似文献   
8.
It is indispensable to modify the physical properties of egg white prior to a fractionation of the included bio-functional proteins. It was already demonstrated that this can be realized with mechanical devices. However, until now, it was not clear by which kind of molecular changes this is accompanied. Thus, this study reports on the molecular changes in egg white proteins induced by various mechanical treatments (high-pressure homogenizer, colloid mill, toothed disc dispersing machine). Evaluation criteria were the particle size of the long-chain protein ovomucin, the content of thiol groups, and disulfide bridges in egg white as well as the amount of free lysozyme. In general, it was shown that these treatments led to changes in the molecular structure and that the obtained modifications were more pronounced the higher the applied energy was. In detail, it was found that the applied mechanical forces in the experimental range of this study were able to disrupt strong covalent bonds in the fibrillar protein ovomucin. Additionally, the bio-functional protein lysozyme that is partly entrapped in the natural egg white structure was released by the applied forces. Summing up, this study generates comprehensive knowledge concerning the underlying mechanisms that enable the release of lysozyme as well as the use of egg white for fractionation processes.  相似文献   
9.
Results of kinetic studies of two‐component photoinitiator systems used in the visible‐light photoinduced polymerization of 2‐ethyl‐2‐(hydroxymethyl)‐1,3‐propanediol triacrylate are presented. Nine different styrylquinolinum dyes coupled with n‐butyltriphenylborate as a coinitiator have been used as photoinitiating systems. Reactive radicals that initiate the polymerization are formed by the well‐known mechanism of photoinduced electron transfer between dye cations acting as electron acceptors and borate anions acting as electron donors. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
10.
In this work structural and transport properties of layered Li1+x(Mn1/3Co1/3Ni1/3)1−xO2 oxides (x = 0; 0.03; 0.06) prepared by a “soft chemistry” method are presented. The excessive lithium was found to significantly improve transport properties of the materials, a corresponding linear decrease of the unit cell parameters was observed. The electrical conductivity of Li1.03(Mn1/3Co1/3Ni1/3)0.97O2 composition was high enough to use this material in a form of a pellet, without any additives, in lithium batteries and characterize structural and transport properties of deintercalated Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 compounds. For deintercalated samples a linear increase of the lattice parameter c together with a linear decrease of the parameter a with the increasing deintercalation degree occurred, but only up to 0.4-0.5 mol of extracted lithium. Further deintercalation showed a reversal of the trend. Electrical conductivity measurements performed of Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 samples (y = 0.1; 0.3; 0.5; 0.6) showed an ongoing improvement, almost two orders of magnitude, in relation to the starting composition. Additionally, OCV measurements, discharge characteristics and lithium diffusion coefficient measurements were performed for Li/Li+/Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号