首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
电工技术   1篇
化学工业   2篇
金属工艺   1篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
崔红兵  田世艳  张茂彩  王誉  杨金梦  辛博 《表面技术》2021,50(5):110-118, 167
目的 研究在0.5 mol/L KNO3和0.1 mol/L HNO3混合溶液中,电极电位对316L不锈钢(316LSS)表层微观形貌、化学组成、耐腐蚀性能和界面接触电阻的影响,以解决316LSS双极板在质子交换膜燃料电池中服役时腐蚀和表面接触电阻较大的问题.方法 借助于电化学交流阻抗、循环伏安、计时电流和动电位极化测试,对316LSS表面发生的电化学反应及改性后性能进行研究.利用电化学工作站、扫描电镜及X射线光电子能谱分析仪,对316LSS的耐腐蚀性能、微观形貌及化合价进行表征,并测量界面接触电阻和反应后溶液中铁铬金属离子浓度进行测量.结果 在0.5 mol/L KNO3+0.1 mol/L HNO3的混合溶液中,316LSS表面发生的反应为不可逆过程,当改性电位为–0.5 V(vs.SCE)时,交流阻抗低频区出现了代表物质吸附的感抗弧,电位负移到–0.6 V(vs.SCE)和–0.7 V(vs.SCE)时,表面发生点腐蚀和晶界腐蚀,膜层的完整性被破坏.最佳电位–0.5 V(vs.SCE)改性后316LSS表面出现凸起结构,表层元素分析发现关键合金元素铬主要以氧化铬和氮化铬形式存在,–0.5 V(vs.SCE)对应的氮化铬占比达54.8%.在140 N/cm2的压力下界面接触电阻与施加电位呈现抛物线关系,最小电阻值为8.7 m?·cm2(–0.5 V(vs.SCE)).改性后的316LSS耐腐蚀性能显著提升,最佳样品的腐蚀电流密度和腐蚀电位分别为0.065μA/cm2和136.738 mV,在模拟燃料电池中运行650 h时,腐蚀电流密度为3.4μA/cm2.结论 电化学改性316LSS的物理化学性能与施加电位大小密切相关.由于316LSS表层钝化膜在电化学反应过程中发生选择性溶解以及原位氮掺杂,促使钝化膜厚度减薄,掺杂氮元素稳定了膜层结构和提高了导电性能,消除了钝化膜对双极板性能的不利影响.最佳改性电位下316LSS表面发生选择性蚀刻形成致密的凸起状氮掺杂膜层,改善了316L不锈钢双极板综合性能.  相似文献   
2.
铅酸蓄电池在化成过程中会产生大量热能,所以需要采取散热措施降温控制电池温度.以空气为冷却介质,设计风冷系统,替代现有的化成水浴槽和循环冷却水系统.对风冷电池化成工艺进行试验研究的结果表明,电池化成过程可控,化成效果良好,电池各项性能指标完全满足相关标准要求.  相似文献   
3.
作为透光功能性材料,玻璃的均匀性是其重要的性质之一。玻璃能成为均匀的透光材料的前提条件,是在熔制阶段获得充分均化的玻璃液。采用ANSYS Fluent软件模拟了会成为玻璃产品的生产液流在搅拌器作用下的流动轨迹。利用统计学分析方法,对添加粒子的搅拌时间、质点分散程度和液流间接触面积进行了系统的统计和分析,并根据搅拌对卡脖中回流量的影响,评价了搅拌对玻璃液均化质量的影响,并对制造出的平板玻璃产品进行光学均匀性的条纹检测作为验证性研究。  相似文献   
4.
采用室温恒压电化学氮化技术在316L不锈钢表面成功制备了氮化涂层.通过X射线光电子能谱(XPS)、电化学阻抗(EIS)、动电位极化和接触角测量等方法对涂层的组成、疏水性和耐腐蚀性进行了分析.结果表明:涂层表面主要由铬的氧化物和混合氮化物(CrN+Cr2N)组成.氮化不锈钢接触角由改性前的76.2°提高到106.7°,腐蚀电位较裸钢提高了530 mV,腐蚀电流密度下降了3个数量级,说明氮化涂层能够有效保护不锈钢基底免受腐蚀.此外,在模拟PEMFC阴极环境中进行了10 h的恒电位极化测试,腐蚀电流密度小于1μA cm-2,验证了涂层长期的稳定性.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号