首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   5篇
电工技术   1篇
机械仪表   1篇
无线电   5篇
  2023年   1篇
  2019年   5篇
  2017年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
该文设计了一种由磁致伸缩材料驱动的电静液作动器,通过主动配流阀的整流作用,实现了作动器内部油液的单向流动,并通过改变驱动电流的相位角,实现了作动器的双向运动及连续可控流量的输出。通过MATLAB/Simulilnk对作动器系统进行数学建模,分析了相位角与作动器输出流量的关系。最后搭建作动器性能测试平台,通过改变驱动电流的相位角,测量作动器的双向输出位移,并得到不同驱动频率下的作动器输出流量,实验结果表明,在系统偏压为0.6 MPa,驱动频率为120 Hz时作动器的最大无负载输出流量为1.28 L/min。  相似文献   
2.
罗樟  朱玉川  高强 《压电与声光》2019,41(2):265-268
针对超磁致伸缩直驱式高速开关阀阀芯位移小的问题,设计了一种活塞-薄片式的液压放大器,利用"钱氏法"和"S.Way解"建立了薄片大挠度变形模型;考虑油液有效体积弹性模量的影响,建立了液压放大器位移的输入-输出模型。仿真与实验结果表明,当液压放大器输入位移为0~51.1μm时,输出位移为0~470μm,放大倍数大于9倍,频响在150 Hz左右。  相似文献   
3.
首先对作动器的工作原理进行分析,随后建立了作动器系统的数学模型,通过仿真分析得到超磁致伸缩执行器输出位移与驱动频率的关系,泵腔内活塞直径、泵腔高度与作动器输出流量的关系以及系统偏压与作动器输出流量的关系。对超磁致伸缩执行器进行实验和仿真对比,验证了仿真模型的正确性。对影响超磁致伸缩电静液作动器输出流量的几种因素进行总结,给出了这些影响因素在超磁致伸缩作动器设计与优化中的选取准则。  相似文献   
4.
罗樟  朱玉川 《压电与声光》2019,41(4):575-581
高速开关阀作为未来液压控制阀发展的一个方向和研究热点,越来越受到研究者的重视。该文介绍了国内、外智能材料驱动的高速开关阀的研究现状,包括智能材料电-机转换器的类型及其微位移放大装置,以及磁致伸缩、压电叠堆、形状记忆合金与磁流体等智能材料驱动的高速开关阀,分析了各类智能材料驱动的高速开关阀的优缺点,得到了各类智能材料在高速开关阀上的应用特性。  相似文献   
5.
提出一种双压电叠堆驱动执行器设计方案,即执行器由2根不同尺寸的压电叠堆驱动,中间由套筒连接。为描述执行器在不同频率下的迟滞特性,利用准静态下的非对称Maxwell模型、系统动力学方程及一阶惯性环节等建立数学模型,并进行参数辨识、模型仿真与实验研究。仿真与实验结果表明,在140 V、600 Hz激励电压信号同时驱动2个长度不超过20 mm压电叠堆时,输出位移可达37.1μm,相较于140 V、1 Hz时的位移仅衰减7.1%,与其他执行器位移放大机构相比,具有较好的高频性能。所建立的执行器率相关迟滞模型在600 Hz内幅值最大误差不超过1.71μm,均方根误差最大为1.34μm,可较准确地描述执行器位移输出特性,为执行器高精度控制提供了基础。  相似文献   
6.
将海德福斯螺纹插装换向阀集成到压电叠堆电静液作动器中,形成一体化集成式双向运动的压电叠堆电静液作动器。基于压电叠堆电静液作动器的物理系统,采用Simscape搭建压电叠堆电静液作动器系统模型。对比了在不同蓄能器偏压、不同电压峰值条件作用下,压电叠堆电静液作动器的实验输出流量与仿真输出流量;以及换向阀换向周期为4s时,压电叠堆电静液作动器的实验输出位移与仿真输出位移,验证了搭建的Simscape模型的准确性。在系统模型得到验证的基础上,分析发现阀片的回流现象是造成压电叠堆电静液作动器在高频驱动时输出流量衰减的原因。  相似文献   
7.
该文利用有限元与CFD的方法建立一维和三维模型,对超临界CO_(2)的动态冷却传热性能进行研究。该文比较了两种模型在外部热流密度发生扰动时的动态响应与反馈,并探讨浮升力效应对管内超临界CO_(2)动态流动换热影响。结果表明:超临界CO_(2)动态冷却的三维动态模拟与一维动态模拟所得出口参数的响应时间具有较大差距;三维模型和一维模型的出口参数动态响应时间在温度接近临界区且管径较大的时候有着较大的差异,浮升力作用是造成两者差异的主要原因之一;浮升力效应通过理查德森数进行量化,在相同管径条件下,Ri越大,三维模型和一维模型之间的差距越大,在Ri大于0.1时,三维动态和一维动态之间响应时间差距较为明显。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号