首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2808篇
  免费   348篇
  国内免费   5篇
电工技术   58篇
综合类   2篇
化学工业   770篇
金属工艺   106篇
机械仪表   175篇
建筑科学   26篇
能源动力   116篇
轻工业   225篇
水利工程   6篇
无线电   544篇
一般工业技术   770篇
冶金工业   78篇
原子能技术   49篇
自动化技术   236篇
  2024年   2篇
  2023年   52篇
  2022年   38篇
  2021年   92篇
  2020年   81篇
  2019年   113篇
  2018年   111篇
  2017年   121篇
  2016年   146篇
  2015年   116篇
  2014年   167篇
  2013年   222篇
  2012年   210篇
  2011年   255篇
  2010年   168篇
  2009年   177篇
  2008年   181篇
  2007年   125篇
  2006年   131篇
  2005年   73篇
  2004年   72篇
  2003年   88篇
  2002年   86篇
  2001年   49篇
  2000年   44篇
  1999年   41篇
  1998年   47篇
  1997年   29篇
  1996年   23篇
  1995年   23篇
  1994年   12篇
  1993年   14篇
  1992年   5篇
  1991年   10篇
  1990年   6篇
  1989年   12篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有3161条查询结果,搜索用时 15 毫秒
1.
Chrysanthemum flower is among one of the highly sought after and widely planted flower crops, in particular for cultural and religious ceremonies. However, the chrysanthemum stem and stalk have little value and usually discard as by‐product waste from floristry. The objective of this research is to investigate the potential value of utilizing chrysanthemum stem and stalk as reinforcing fillers for thermoplastic composites. In this study, 2‐mm thick composite sheet containing predefined formulations of polylactic acid (PLA), chrysanthemum waste filler (CWF) ranging from 15 to 60 phr, and maleated polyethylene (MAPE) coupling agent up to 5 phr were prepared with the aid of Haake internal mixer and compression molding. The effect of MAPE loading on tensile, thermal, and morphological properties of PLA/CWF composites was investigated. The findings revealed that PLA/CWF composite attained improved tensile modulus compared to the neat PLA, and the tensile modulus increases with higher concentration of CWF. However, both tensile strength and elongation at break reduces with increase loading of CWF. Overall, PLA/CWF composites with MAPE shows better performance compared to those without MAPE, where an optimum strength of 21.8 MPa can be achieved with 60 phr CW and 3 phr MAPE. The measured tensile strength is comparable to alternatives natural fiber thermoplastic composites demonstrating its potential to be used in non‐structurally demanding application. J. VINYL ADDIT. TECHNOL., 26:10–16, 2020. © 2019 Society of Plastics Engineers  相似文献   
2.
Current immunosensors have an insufficient number of binding sites for the recognition of biomolecules, which leads to false positive or negative results. In this research, a facile, cost‐effective, disposable, and highly selective electrochemical immunosensing platform is developed based on cationic polyelectrolyte polyallylamine (PAAMI) anchored laser‐ablated graphene (LAG). Here, for the first time, PAAMI is introduced to stabilize LAG flakes, while retaining the intrinsic thermal and electronic properties of the substrate by noncovalent π–π interaction and electrostatic physical absorption. The sensing platform offers a suitable number of anchoring sites for the immobilized antibodies by providing ? NH2 functional groups. The proper grafting of PAAMI is confirmed through X‐ray photoelectron spectroscopy and Raman spectroscopy. The immunosensing platform is applied to detect immunoglobulin (IgG) biomarkers as a proof of concept. Under optimized conditions, the sensing platform exhibits a linear range of 0.012–15 and 15–352 ng mL?1 with a limit of detection of 6 pg mL?1 for IgG detection with high selectivity. Based on the analysis, the developed immunosensing platform can be used for point‐of‐care detection of IgG in clinical diagnostic centers. Furthermore, the developed strategy is well suited for the detection of other cancer biomarkers after immobilizing the relevant antibodies.  相似文献   
3.
This work demonstrates a means of automatic transformation from planar electronic devices to desirable 3D forms. The method uses a spatially designed thermoplastic framework created via extrusion shear printing of acrylonitrile–butadiene–styrene (ABS) on a stress‐free ABS film, which can be laminated to a membrane‐type electronic device layer. Thermal annealing above the glass transition temperature allows stress relaxation in the printed polymer chains, resulting in an overall shape transformation of the framework. In addition, the significant reduction in the Young's modulus and the ability of the polymer chains to reflow in the rubbery state release the stress concentration in the electronic device layer, which can be positioned outside the neutral mechanical plane. Electrical analyses and mechanical simulations of a membrane‐type Au electrode and indium gallium zinc oxide transistor arrays before and after transformation confirm the versatility of this method for developing 3D electronic devices based on planar forms.  相似文献   
4.
5.
Thermal tempering is an industrial process widely used to make soda lime silica (SLS) glass panels stronger and tougher. During the tempering process, the upper and bottom sides of the glass may experience different cooling rates, and thus, their properties could be different. This study characterized changes in surface composition and subsurface glass network structures as well as indentation and wear resistance properties of the air- and tin-sides of 6-mm-thick SLS window panels faced toward the upper and sliding roller sides during thermal tempering. The results showed that although the chemical and structural differences detected with X-ray photoelectron spectroscopy and specular reflection infrared spectroscopy are subtle, there are large differences in nanoindentation behaviors and mechanochemical wear properties of the SLS glass surface. The findings of this study provide further insights into the performance difference between the air- and tin-sides of the SLS glass panel treated with thermal tempering.  相似文献   
6.
Functional materials exhibiting magnetic and luminescent properties have been recognized as an emerging class of materials with great potential in advanced applications. Herein, properties of multifunctional ceramic composites consisting of two garnets, luminescent cerium-doped Y3Al5O12 (Ce:YAG) and magnetic Y3Fe5O12 (YIG), are reported. On increasing the sintering temperature, both the photoluminescence and saturation magnetization of the Ce:YAG-YIG composites decreased gradually because of the interdiffusion of trivalent ions such as Al3+ and Fe3+. At a constant sintering temperature of 1100?°C, the YIG contents in the composites increased, thereby causing their luminescent properties to degrade and the saturation magnetizations to increase. For application to electronics, Ce:YAG-YIG composite thin films were integrated on quartz substrates by sputtering the ceramic target. The composite thin films exhibited both magnetic and luminescent properties after annealing. These techniques facilitate the incorporation of multifunctional nanocomposites into various devices.  相似文献   
7.
Journal of Mechanical Science and Technology - Confocal fringe patterns of evaporating sessile drops have provided initial evidence of the presence of a sub-micron thin liquid film emanating from...  相似文献   
8.
The synthesis of large‐area TiS2 thin films is reported at temperatures as low as 500 °C using a scalable two‐step method of metal film deposition followed by sulfurization in an H2S gas furnace. It is demonstrated that the lowest‐achievable sulfurization temperature depends strongly on the oxygen background during sulfurization. This dependence arises because Ti? O bonds present a substantial kinetic and thermodynamic barrier to TiS2 formation. Lowering the sulfurization temperature is important to make smooth films, and to enable integration of TiS2 and related transition metal dichalcogenides—including metastable phases and alloys—into device technology.  相似文献   
9.
10.

In the present study, improved two-parameter mixed models for large eddy simulations are proposed based on previous two-parameter mixed models of Salvetti and Banerjee [1] and Horiuti [2]. The subgrid-scale (SGS) stress in our models is decomposed into the modified Leonard stress, modified cross stress and modified SGS Reynolds stress terms. Although the modified Leonard stress term is explicitly calculated based on the scale-similarity, the modified cross stress term is built using an extension of the filtered Bardina model proposed by Horiuti [3] for better predictions of the interaction between resolved and unresolved scales (i.e., energy exchange). The modified SGS Reynolds stress is modeled by the dynamic Smagorinsky model or by a dynamic global model, leading to two unknown model coefficients for the modified cross stress and the modified SGS Reynolds stress terms. In order to demonstrate the reliability of the proposed SGS models, large eddy simulations of two types of flows (i.e., a fully developed turbulent channel flow and a transitional boundary layer flow) are performed. It is shown that the modified cross stress term makes an important contribution to the accurate predictions of such flows because the emergence of negative SGS dissipation (backward scatter) by the modified cross stress term decreases the excessive positive SGS dissipation (forward scatter). A direct comparison of the turbulent statistics with those from previous SGS models shows that the proposed SGS models result in better prediction performance both in transitional and turbulent flows.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号