首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9920篇
  免费   405篇
  国内免费   10篇
电工技术   113篇
综合类   10篇
化学工业   1492篇
金属工艺   115篇
机械仪表   219篇
建筑科学   373篇
矿业工程   15篇
能源动力   276篇
轻工业   688篇
水利工程   87篇
石油天然气   54篇
无线电   922篇
一般工业技术   1988篇
冶金工业   2428篇
原子能技术   90篇
自动化技术   1465篇
  2023年   67篇
  2022年   43篇
  2021年   186篇
  2020年   154篇
  2019年   177篇
  2018年   177篇
  2017年   191篇
  2016年   213篇
  2015年   175篇
  2014年   264篇
  2013年   546篇
  2012年   405篇
  2011年   555篇
  2010年   430篇
  2009年   407篇
  2008年   487篇
  2007年   404篇
  2006年   360篇
  2005年   319篇
  2004年   267篇
  2003年   246篇
  2002年   277篇
  2001年   171篇
  2000年   158篇
  1999年   201篇
  1998年   550篇
  1997年   390篇
  1996年   276篇
  1995年   174篇
  1994年   165篇
  1993年   171篇
  1992年   100篇
  1991年   96篇
  1990年   77篇
  1989年   79篇
  1988年   97篇
  1987年   74篇
  1986年   66篇
  1985年   91篇
  1984年   90篇
  1983年   59篇
  1982年   63篇
  1981年   77篇
  1980年   61篇
  1979年   60篇
  1978年   55篇
  1977年   92篇
  1976年   152篇
  1974年   52篇
  1973年   47篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
2.
Metal organic frameworks (MOFs) containing zirconium secondary building units (SBUs) in UiO-67 and related MOFs, are highly active for neutralizing both the chemical warfare agents and simulants, such as dimethyl methylphosphonate (DMMP). However, two recent publications gave conflicting reports of DMMP reaction with UiO-67 under ultra high vacuum (UHV) conditions, with one reporting chemisorption and reaction (Wang et al., J Phys Chem C, 2017, 121, 11261–11272) and the other reporting only physisorption and reversible desorption (Ruffley et al., J Phys Chem C, 2019, 123, 19748–19758) from very similar temperature programmed desorption experiments. We show that the discrepancy between these experiments may be explained by different levels of missing linker defects in the UiO-67 samples. We present density functional theory calculations showing that SBU sites having two-adjacent missing linkers exhibit reaction barriers that are about 30 kJ/mol lower than SBU sites having a single missing linker. We also show that topology of the undercoordinated sites plays an important role in the reaction barrier under UHV conditions.  相似文献   
3.
The glass transition temperature (Tg) is a key parameter to investigate for application in nuclear waste immobilization in borosilicate glasses. Tg for several glasses containing iodine (I) has been measured in order to determine the I effect on Tg. Two series of glass composition (ISG and NH) containing up to 2.5 mol% I and synthesized under high pressure (0.5 to 1.5 GPa) have been investigated using differential scanning calorimetry (DSC). The I local environment in glasses has been determined using X-ray photoelectron spectroscopy and revealed that I is dissolved under its iodide form (I). Results show that Tg is decreased with the I addition in the glass in agreement with previous results. We also observed that this Tg decrease is a strong function of glass composition. For NH, 2.5 mol% I induces a decrease of 24°C in Tg, whereas for ISG, 1.2 mol% decreases the Tg by 64°C. We interpret this difference as the result of the I dissolution mechanism and its effect on the polymerization of the boron network. The I dissolution in ISG is accompanied by a depolymerization of the boron network, whereas it is the opposite in NH. Although ISG corresponds to a standardized glass, for the particular case of I immobilization it appears less adequate than NH considering that the decrease in Tg for NH is small in comparison to ISG.  相似文献   
4.
In the past decade, the perovskite solar cell (PSC) has attracted tremendous attention thanks to the substantial efforts in improving the power conversion efficiency from 3.8% to 25.5% for single-junction devices and even perovskite-silicon tandems have reached 29.15%. This is a result of improvement in composition, solvent, interface, and dimensionality engineering. Furthermore, the long-term stability of PSCs has also been significantly improved. Such rapid developments have made PSCs a competitive candidate for next-generation photovoltaics. The electron transport layer (ETL) is one of the most important functional layers in PSCs, due to its crucial role in contributing to the overall performance of devices. This review provides an up-to-date summary of the developments in inorganic electron transport materials (ETMs) for PSCs. The three most prevalent inorganic ETMs (TiO2, SnO2, and ZnO) are examined with a focus on the effects of synthesis and preparation methods, as well as an introduction to their application in tandem devices. The emerging trends in inorganic ETMs used for PSC research are also reviewed. Finally, strategies to optimize the performance of ETL in PSCs, effects the ETL has on J–V hysteresis phenomenon and long-term stability with an outlook on current challenges and further development are discussed.  相似文献   
5.
6.
Determining the structure of the (oligomeric) intermediates that form during the self-assembly of amyloidogenic peptides is challenging because of their heterogeneous and dynamic nature. Thus, there is need for methodology to analyze the underlying molecular structure of these transient species. In this work, a combination of fluorescence quenching, photo-induced crosslinking (PIC) and molecular dynamics simulation was used to study the assembly of a synthetic amyloid-forming peptide, Aβ16-22. A PIC amino acid containing a trifluormethyldiazirine (TFMD) group—Fmoc(TFMD)Phe—was incorporated into the sequence (Aβ*16–22). Electrospray ionization ion-mobility spectrometry mass-spectrometry (ESI-IMS-MS) analysis of the PIC products confirmed that Aβ*16–22 forms assemblies with the monomers arranged as anti-parallel, in-register β-strands at all time points during the aggregation assay. The assembly process was also monitored separately using fluorescence quenching to profile the fibril assembly reaction. The molecular picture resulting from discontinuous molecule dynamics simulations showed that Aβ16-22 assembles through a single-step nucleation into a β-sheet fibril in agreement with these experimental observations. This study provides detailed structural insights into the Aβ16-22 self-assembly processes, paving the way to explore the self-assembly mechanism of larger, more complex peptides, including those whose aggregation is responsible for human disease.  相似文献   
7.
8.
Nerve growth conduits are designed to support and promote axon regeneration following nerve injuries. Multifunctionalized conduits with combined physical and chemical cues, are a promising avenue aimed at overcoming current therapeutic barriers. However, the efficacious assembly of conduits that promote neuronal growth remains a challenge. Here, a biomimetic regenerative gel is developed, that integrates physical and chemical cues in a biocompatible “one pot reaction” strategy. The collagen gel is enriched with magnetic nanoparticles coated with nerve growth factor (NGF). Then, through a remote magnetic actuation, highly aligned fibrillar gel structure embedded with anisotropically distributed coated nanoparticles, combining multiple regenerating strategies, is obtained. The effects of the multifunctional gels are examined in vitro, and in vivo in a 10-mm rat sciatic nerve injury model. The magneto-based therapeutic conduits demonstrate oriented and directed axonal growth, and improve nerve regeneration in vivo. The study of multifunctional guidance scaffolds that can be implemented efficiently and remotely provides the foundation to a novel therapeutic approach to overcome current medical obstacles for nerve injuries.  相似文献   
9.
Multidimensional Systems and Signal Processing - In general, the fusion of visible-light and infrared images produces a composite representation where both data are pictured in a single image. The...  相似文献   
10.
Resilience in river ecosystems requires that organisms must persist in the face of highly dynamic hydrological and geomorphological variations. Disturbance events such as floods and droughts are postulated to shape life history traits that support resilience, but river management and conservation would benefit from greater understanding of the emergent effects in communities of river organisms. We unify current knowledge of taxonomic‐, phylogenetic‐, and trait‐based aspects of river communities that might aid the identification and quantification of resilience mechanisms. Temporal variations in river productivity, physical connectivity, and environmental heterogeneity resulting from floods and droughts are highlighted as key characteristics that promote resilience in these dynamic ecosystems. Three community‐wide mechanisms that underlie resilience are (a) partitioning (competition/facilitation) of dynamically varying resources, (b) dispersal, recolonization, and recruitment promoted by connectivity, and (c) functional redundancy in communities promoted by resource heterogeneity and refugia. Along with taxonomic and phylogenetic identity, biological traits related to feeding specialization, dispersal ability, and habitat specialization mediate organism responses to disturbance. Measures of these factors might also enable assessment of the relative contributions of different mechanisms to community resilience. Interactions between abiotic drivers and biotic aspects of resource use, dispersal, and persistence have clear implications for river conservation and management. To support these management needs, we propose a set of taxonomic, phylogenetic, and life‐history trait metrics that might be used to measure resilience mechanisms. By identifying such indicators, our proposed framework can enable targeted management strategies to adapt river ecosystems to global change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号