首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1688篇
  免费   120篇
  国内免费   16篇
电工技术   43篇
综合类   8篇
化学工业   461篇
金属工艺   46篇
机械仪表   79篇
建筑科学   50篇
矿业工程   2篇
能源动力   94篇
轻工业   153篇
水利工程   37篇
石油天然气   21篇
武器工业   2篇
无线电   131篇
一般工业技术   309篇
冶金工业   67篇
原子能技术   17篇
自动化技术   304篇
  2024年   2篇
  2023年   56篇
  2022年   76篇
  2021年   125篇
  2020年   111篇
  2019年   126篇
  2018年   136篇
  2017年   115篇
  2016年   117篇
  2015年   81篇
  2014年   94篇
  2013年   158篇
  2012年   122篇
  2011年   99篇
  2010年   75篇
  2009年   77篇
  2008年   45篇
  2007年   41篇
  2006年   29篇
  2005年   11篇
  2004年   9篇
  2003年   11篇
  2002年   10篇
  2001年   2篇
  2000年   6篇
  1999年   8篇
  1998年   18篇
  1997年   9篇
  1996年   7篇
  1995年   8篇
  1994年   10篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1987年   3篇
  1986年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1968年   1篇
排序方式: 共有1824条查询结果,搜索用时 144 毫秒
1.
Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene “CaDHN3” from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•− contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper.  相似文献   
2.
Ferrites are an important group of magnetic materials which are used as absorbers. The incorporation of ferrite and conducting polymer achieves great enhancement in microwave absorption properties. The nanocomposites of hexagonal ferrites embedded by conducting polymers such as polypyrrole, polyaniline and polythiophene (PTH) have been paid much attention. In the present study, strontium hexagonal ferrite doped by Zr and Zn with the final formula of SrFe12-x(ZrZn)0.5xO19 considering x = 0.9 and embedded by PTH was produced to achieve a nanocomposite with the highest microwave absorbing ability. In this study, after synthesis of SrFe12O19(ZrZn)0.5xO19 and PTH, the nanocomposite was prepared by in situ polymerization. Wrapping the ferrite particles and PTH chains could form nanocomposite properly, and therefore acceptable interactions were observable between SrFe12-x(ZrZn)0.5xO19ferrite particles and PTH polymer chains in the composites. Assessing the X-ray diffraction (XRD) patterns of SrFe12-x(ZrZn)0.5xO19, PTH, and PTH/SrFe12-x(ZrZn)0.5xO19 nanocomposite indicated that the PTH characteristic peak shifts slightly and its peak intensity reduces, which may be attribute to the coating of PTH polymer chains onto SrFe12-x(ZrZn)0.5xO19 particles. We revealed also lower magnetic properties in the obtained nanocomposite. The morphological assessment also suggested that PTH could effectively coat the SrFe12-x(ZrZn)0.5xO19 particles. The synergistic effect of SrFe12-x(ZrZn)0.5xO19 particle plus PTH leads to microwave absorption percentage higher than 95% by PTH/SrFe12-x(ZrZn)0.5xO19 nanocomposite. Overall, nanocomposite creating by coupling interaction between SrFe12-x(ZrZn)0.5xO19 particles (x = 0.9) and PTH can effectively lead to achieve the highest rate of absorption of electromagnetic waves.  相似文献   
3.
Electric distribution networks have to deal with issues caused by natural disasters. These problems possess unique characteristics, and their severity can make load restoration methods impotent. One solution that can help in alleviating the aftermath is the use of microgrids (MGs). Employing the cumulative capacity of the generation resources through MG coupling facilitates the self-healing capability and leads to better-coordinated energy management during the restoration period, while the switching capability of the system should also be considered. In this paper, to form and schedule dynamic MGs in distribution systems, a novel model based on mixed-integer linear programming (MILP) is proposed. This approach employs graph-related theories to formulate the optimal formation of the networked MGs and management of their proper participation in the load recovery process. In addition, the Benders decomposition technique is applied to alleviate computability issues of the optimization problem. The validity and applicability of the proposed model are evaluated by several simulation studies.  相似文献   
4.
Cu(BDC) metal–organic framework (MOF) was used as a support for the copper (Cu) catalyst applied in the methanol steam reforming (MSR) process at low temperatures (130–250 °C) with a feed WHSV = 9.2 h?1 within the monolithic reactor. Also, the effects of diverse promoters were examined on the catalytic activities of the Cu/X–Cu(BDC) (X = Ce, Zn, Gd, Sm, La, Y, Pr) catalysts. Results showed that the Ce/Sm–Cu(BDC) supports exhibited highest activities, lowest reduction temperatures and largest specific surface areas, which caused highest distributions of the active copper metal nanoparticles on the supports. The reactor tests displayed that the activities of Cu/X–Cu(BDC) (X = Ce, Zn, Gd, Sm, La, Y, Pr) catalysts followed the order X = Ce > Sm > Y > La > Pr > Cu(BDC) > Zn > Gd. The highest activities of Ce and Sm containing catalysts were attributed to the presence of CeO2 and Sm2O3 caused the oxygen vacancies on the catalyst surface which had positive effects on the methanol reforming process. The time-on-stream stability tests showed the highest resistance of the Cu/Ce–Cu(BDC) catalyst to the carbon formation during 32 h. Consequently, the Cu/Ce–Cu(BDC) with the highest stability, methanol conversion and carbon monoxide selectivity could be used in practical industrial applications.  相似文献   
5.
Porous bony scaffolds are utilized to manage the growth and migration of cells from adjacent tissues to a defective position. In the current investigation, the effect of titanium oxide (TiO2) nanoparticles on mechanical and physical properties of porous bony implants made of polymeric polycaprolactone (PCL) is studied. The bio-nanocomposite scaffolds are prepared with composition of nanocrystalline hydroxyapatite (HA) and TiO2 powder using the freeze-drying technique for different weight fractions of TiO2 (0 wt%, 5 wt%, 10 wt%, and 15 wt%). In order to identify the microstructure and morphology of the fabricated porous bio-nanocomposites, the X-ray diffraction (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM) are employed. Also, the biocompatibility and biodegradability of the manufactured scaffolds are examined by placing them in a simulated body fluid (SBF) for 21 days, their weight and pH changes are measured. The rate of degradation of the PCL-HA scaffold can be controlled by varying the percentage of its constituent components. Due to an increasing growth and activity of bone cells and the apatite formation on the free surface of the fabricated bio-nanocomposite implants as well as their reasonable mechanical properties, they have the potential to be used as a bone substitute. Additionally, with the aid of the experimentally extracted mechanical properties of the scaffolds, the vibrational characteristics of a beam-type implant made of the proposed porous bio-nanocomposites are explored. The results obtained from SEM image indicate that the scaffolds produced by the employed method have high total porosity (70%–85%) and effective porosity. The pore size is obtained between 60 and 200 μm, which is desirable for the growth and propagation of bone cells. Also, it is revealed that the addition of TiO2 nanoparticles leads to reduce the rate of dissolution of the fabricated bio-nanocomposite scaffolds.  相似文献   
6.
In the present study, hexagonal boron nitride (h-BN) was synthesized from boric acid and melamine by thermal annealing method in a nitrogen atmosphere. The pure h-BN was used as an efficient sorbent for the uptake of Cd2+ ions from the solution phase. The kinetics and sorption studies of metal ions onto the h-BN were carried out in batch adsorption experiments at different temperature, time, pH, sorbent dosage, and concentration of metal ions. The optimum pH for the removal of the Cd2+ ions was found to be pH 7. The effect of temperature showed that the process of Cd2+ sorption remained endothermic in the range of 298 K–328 K. The Lagergren's first and Ho's second kinetic models were tested to interpret the adsorption kinetic data, however the present data was explained well by Ho's model for kinetics. The thermodynamic perameters ΔG, ΔS and ΔH were determined using the available adsorption data at different temperatures. The physicochemical properties of the synthesized product were also characterized before and after adsorption by different analytical techniques like FT-IR, TGA, XRD and Point of Zero Charge (PZC). The morphology of the surface was analyzed with the help of Scanning Electron Microscopy. The h-BN proved to be an efficient adsorbent for the uptake of the Cd2+ ions from aqueous media.  相似文献   
7.
Vitamin D lost its functionality during processing and storage, thus, encapsulation with proteins is desirable to preserve bioactivity. The aim of the current study was to develop encapsulated vitamin D fortified mayonnaise (VDFM) using whey protein isolates (WPI) and soy protein isolates (SPI) as encapsulating materials in three different formulations, that is, 10% WPI, 10% SPI, and 5/5% WPI/SPI. Increased shear stress decreased the apparent viscosity along with significant effects on the loss modulus of VDFM. WPI encapsulates showed better results as compared to SPI. WPI based VDFM (M1) depicted the best results in terms of size and dispersion uniformity of oil droplets. Hue angle and total change differed significantly among treatments. The highest value for overall acceptability was acquired by M3 (5:5%WPI:SPI-encapsulates) thus proceed for in vivo trials. Serum vitamin D level was significantly higher in the encapsulated VDFM rat group (58.14 ± 6.29 nmol/L) than the control (37.80 ± 4.98 nmol/L). Conclusively, WPI and SPI encapsulates have the potential to improve the stability and bioavailability of vitamin D.  相似文献   
8.
In this paper, a numerically comprehensive investigation have been performed in order to propose a high-κ spacer triple-gate junctionless FinFET (HKS  相似文献   
9.

Dynamically crosslinked thermoplastic elastomer nanocomposites were synthesized as modifier for the bitumen binder-based asphalts. Linear low-density polyethylene (LLDPE) and styrene-butadiene rubber (SBR), with the ratio of 80/20, bitumen, and organically modified clay (OC) were all melt mixed in the presence of the sulfur curing system. The proposed mixing was carried out in an internal mixer at 160 °C with a rotor speed of 120 rpm. To enhance the molecular interactions between the polymer phases and the clay silicate layers, maleic anhydride-grafted LLDPE (PE-g-MA) with the maleiation degree of 50% was also incorporated into the mixture. Observation of the composite samples, using the scanning electron microscopy (SEM), revealed the matrix dispersed type of morphology for all dynamically vulcanized samples. X-ray diffraction (XRD) and transmission electron microscopy (TEM) examinations evidenced the exfoliation of the clay silicate layers with good dispersion. Rheomechanical spectrometry (RMS) was performed on the prepared nanocomposites. All dynamically vulcanized nanocomposites comprising 2.5% of OC exhibited shear-thinning behavior and non-terminal characteristics with a low frequency range. These indicate the formation of three-dimensional physical networks by the clay nanolayers throughout the LLDPE matrix. The presence of the bitumen in the composition of the prepared nanocomposites improved the flowability of the samples. This is a promising feature of the prepared nanocomposites to be used as an elastic and resistant modifier in the composition of the bitumen-based asphalts.

  相似文献   
10.
Neural Computing and Applications - Milling by mechanical means is vital unit operation in pharmaceutical processing which can be used for controlling particle size reduction. This approach can be...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号