首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  国内免费   1篇
化学工业   3篇
轻工业   3篇
一般工业技术   3篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2018年   3篇
  2014年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
介绍了动物和植物型非常规蛋白资源的种类及其制备蛋白基木材胶黏剂的研究现状和存在的问题,展望了非常规蛋白胶黏剂的发展前景。  相似文献   
2.
为了研究楠竹笋生长时期对土壤中铅(Pb)和镉(Cd)的累积效应及在各器官中的分配特征,在竹笋生长期的楠竹林里,施加外源硝酸铅(Pb(NO3)2)和硝酸镉(Cd(NO3)2)模拟土壤不同污染程度:5 mg·m-2轻度污染、50 mg·m-2中度污染、500 mg·m-2重度污染以及0 mg·m-2(对照)4个浓度梯度的Pb、Cd,分析Pb和Cd在楠竹笋不同生长期及各器官中的富集、累积和分配特征。结果表明:笋中各部位Pb、Cd的富集与外施Pb、Cd浓度和时间呈正相关,竹笋体内Pb和Cd的累积量随时间推移、污染程度增强而明显增加。三种污染程度中,除重度污染笋底在第21 d Pb含量超标,楠竹笋可食部分Pb含量均低于国家食品卫生标准(1.0 mg·kg-1);轻度、中度污染的竹笋可食部分Cd含量在0.02~0.14 mg·kg-1,低于国家食品卫生标准(0.2 mg·kg-1),然而重度镉污染使可食部分竹笋在第14 d以后含量超过国家食品卫生标准。重度污染时,施药第21 d后Pb、Cd在竹笋各器官中的累积百分比分别表现为笋根(73.84%、72.79%),笋底(6.33%、6.97%),笋中(2.52%、1.95%),笋尖(2.68%、0.52%),笋皮(14.63%、17.77%)。生物富集系数(BCF)和转移系数(TF)呈"上升"趋势。综上认为,Pb和Cd在楠竹笋体内具有明显的累积效应,并可转移到竹笋地上部各器官或组织中,导致这些器官或组织被Pb和Cd污染。  相似文献   
3.
采用溶胶-凝胶法制备聚磷酸铵(APP)-SiO2凝胶/杨木阻燃复合材料,表征其微观形貌、结构组成、物理力学性能,并研究其阻燃抑烟作用机理。结果表明,APP-SiO2凝胶主要分布在木材导管、木射线及细胞间隙中,凝胶体系与木材纤维素形成氢键紧密结合。复合材料在700℃的失重率仅为素材的71.9%,残炭量由5.4%上升到31.9%,热稳定性改善。复合材料的热释放速率、总热释放量、烟生成速率、总烟释放量较未处理木材均明显降低,当APP浓度为18%时,复合材料的总烟释放量仅为素材的4.9%,表现出高效的阻燃抑烟特性。尽管复合材料的静曲强度略微降低,但其弹性模量明显上升,增幅高达35.8%。  相似文献   
4.
对木塑复合材料(WPC)在建筑模板、地板、墙板和家具等绿色建筑领域的应用现状进行综述。同时,总结了WPC的相关指标及检验检测标准,为开发制备具有更加优秀品质的功能化WPC提供依据。WPC符合国家政策和发展规划,在绿色建筑领域具有巨大的潜在市场和广阔的应用前景。  相似文献   
5.
利用热重和锥形量热仪研究硼酸、硼砂两种典型硼化合物对毛竹热降解和燃烧性能的影响。结果表明:硼酸、硼砂能降低竹材的最大热解速率,缩短高温热解区间,促进残炭生成。与未处理材相比,硼酸、硼砂明显减少竹材燃烧过程中的热量释放,热释放速率降至未处理材的50%左右,总热释放量的降幅分别达50.6%、44.1%。硼酸、硼砂也能抑制竹材燃烧时的烟释放,总烟释放量分别下降95.3%、91.6%。硼酸、硼砂处理竹材能发挥高效的阻燃抑烟功效。  相似文献   
6.
为明确浸提法和冷榨法对油茶籽油营养成分的影响。通过对油茶籽油的脂肪酸组成、微量养分及营养元素等进行分析测试,采用主成分因子分析法对油脂品质进行综合评价,研究油茶籽油冷榨法和浸提法两种制油方式对贵州5个主产区的油茶籽油的营养成分的影响。结果表明:压榨法和浸提法制取的油茶籽油的脂肪酸组成及其含量无显著差异(P>0.05),油茶籽油的不饱和脂肪酸占总脂肪酸约90%,以油酸含量79%~81%为最高,其次,亚油酸约为5%~8%。压榨法制油的微量养分角鲨烯和维生素E 5个主产区的平均含量较浸提法分别高12.56%和115.76%。不同产地油茶籽油的营养元素含量差异性较大(P<0.05),元素含量表现为Ca>K>Na>Mg>Fe>Mn>Zn>Ni>Cu>Se。压榨法制油Ca、Fe、Ni、Cu、Zn、Se等元素含量较浸提法高,其中,Ca、Fe、Zn分别高18.77%、461.66%、78.09%,Ni、Cu、Se在浸提法中未检出。而浸提法制油K、Na、Mg、Mn等含量较压榨法高,依次高66.75%、48.24%、79.16%、75.46%。品质评价结果表明册亨的本地红球老油茶和松桃的小果油茶综合得分分别为0.902和0.560,品质最好,其次,为黎平的本地老油茶和天柱湘林系列,玉屏的湘林210次之。此外,在仅考虑脂肪酸组成、维生素E、角鲨烯及元素等营养的情况下,压榨法所制油茶籽油品质高于浸提法。该研究丰富了油茶品质分析的基础理论,同时为贵州产油茶品质的科学评价提供新的方法和思路。  相似文献   
7.
木塑复合材料功能化改性研究进展   总被引:1,自引:0,他引:1  
杨守禄  罗莎  章磊  姬宁  李丹  吴义强 《材料导报》2018,32(17):3090-3098
木塑复合材料(WPC)是采用木质材料和塑料加工制备而成的一种绿色、环境友好新型材料,具有强度高、力学性能好、可循环使用及成本低等优势,被广泛应用于建筑材料、室内装饰材料、包装及运输材料和文化体育等领域。WPC不仅解决了废弃木质纤维材料综合利用率低及处理废弃木质纤维材料带来的环境污染等问题,而且有助于缓解废旧塑料引发的"白色污染"等重大环境问题,是废弃木质纤维和废旧塑料再生利用的一个趋势,具有广阔的市场空间和应用前景,已成为当今木质材料和塑料加工领域的研究热点之一。然而,WPC中的木质材料和塑料都是易燃物质,且燃烧产生的烟易造成人员伤亡;WPC使用过程中容易受到自然环境的影响,显著降低其物理力学性能及耐久性能;同时,由于WPC中含有木质材料,使用过程中容易遭受微生物的侵袭和破坏,导致材料变质而影响使用,甚至危害人体健康。以上缺陷严重影响其使用范围和使用寿命。近年来,研究者们致力于改善WPC的阻燃抑烟、耐老化、耐候及抗菌性能,取得了显著的成果。在实现阻燃抑烟、耐老化、耐候和抗菌功能化WPC时应用较为广泛的方法包括添加改性剂、对木质材料或塑料基体进行预处理、对WPC表面进行改性处理等。由于添加改性剂和对WPC进行表面处理具有操作简单、成本低等优势,已成为实现WPC功能化最常用的方法,可广泛用于WPC的加工。常用的阻燃抑烟剂包括聚磷酸胺(APP)、次磷酸铝(AHP)、纳米金属化合物、金属氢氧化物及含氮磷化合物等,耐老化剂、耐候剂包括受阻胺光稳定剂、紫外吸收剂、紫外线稳定剂及颜料等,抗菌剂包括纳米二氧化钛、纳米粘土、硼酸锌等。WPC表面改性处理主要是表面涂刷功能性涂料或接枝功能性试剂。目前,WPC的功能化研究集中于单一功能的增强,多功能的WPC有待进一步研究。WPC功能化改性是拓宽其应用范围、延长使用寿命和提高安全使用性能的关键。本文综述了WPC阻燃抑烟改性、耐老化和耐候改性及抗菌改性等功能化改性的研究进展,介绍了WPC的阻燃抑烟、耐老化、耐候及抗菌性能等功能表征手段,并对其发展趋势进行了展望,提出了WPC功能化改性亟待解决的难题。  相似文献   
8.
改性生物炭对土壤重金属污染修复研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
土壤中金属污染导致食用林产品、农产品中重金属高富集,严重威胁人类健康。生物炭作为简单易得,来源广泛的吸附材料,可用于土壤重金属污染物修复。本文主要综述了生物炭的制备、改性剂的选择与功能、改性方法及改性生物炭的特性。介绍了改性生物炭的表征手段如傅里叶变换红外光谱、扫描电子显微镜、X射线光电子能谱和比表面积和孔径分析仪在生物炭改性过程中的作用及分析方法。客观分析了改性生物炭的制备方式及对土壤重金属污染修复的机制及效果,并讨论生物炭及改性生物炭对重金属常见的吸附机理以及表面吸附、静电作用、离子交换和共沉淀的特征和条件。大量的研究结果表明,生物炭对降低土壤中重金属的有效态含量具有显著效果,且经过酸碱、氧化还原、吸附剂复合等方式改性后吸附性能更加高效和稳定。生物炭改性是为了提高生物炭的安全性、高效性、重复使用性和环境友好性,同时加强生物炭的重金属修复性能。因此,功能型生物炭的研制及拓展改性生物炭的应用是生物炭改性的进一步深入研究方向。  相似文献   
9.
低物质的量比脲醛树脂胶粘剂制备的纤维板的力学性能及防潮性能低,因此通过脲醛树脂的改性处理对提高纤维板的性能具有重要意义。以三聚氰胺为改性剂,采用一次性加入的方式制备三聚氰胺改性低物质的量比脲醛树脂。探究了不同三聚氰胺用量对脲醛树脂及其制备的纤维板理化性能的影响。研究结果表明:当三聚氰胺质量分数从0增加到25%,改性脲醛树脂的贮存稳定性较好,固化时间先延长后缩短,游离甲醛释放量先降低后增加但均处于E1级以下;三聚氰胺的加入显著提高了脲醛树脂的胶接性能及耐水性能,三聚氰胺用量达到25%时,纤维板的吸水厚度膨胀率可以从12.73%降低至3.69%;三聚氰胺的加入封闭了亲水性基团,降低了脲醛树脂固化后的结晶度,提高了纤维板的力学性能和防潮性能。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号