首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37487篇
  免费   14885篇
电工技术   691篇
综合类   1篇
化学工业   16442篇
金属工艺   328篇
机械仪表   717篇
建筑科学   1619篇
矿业工程   6篇
能源动力   863篇
轻工业   7377篇
水利工程   294篇
石油天然气   50篇
无线电   6893篇
一般工业技术   11230篇
冶金工业   1375篇
原子能技术   21篇
自动化技术   4465篇
  2023年   21篇
  2022年   24篇
  2021年   281篇
  2020年   1470篇
  2019年   3207篇
  2018年   3136篇
  2017年   3451篇
  2016年   3922篇
  2015年   3981篇
  2014年   3927篇
  2013年   5079篇
  2012年   2773篇
  2011年   2469篇
  2010年   2746篇
  2009年   2597篇
  2008年   2167篇
  2007年   2000篇
  2006年   1729篇
  2005年   1432篇
  2004年   1391篇
  2003年   1373篇
  2002年   1079篇
  2001年   583篇
  2000年   277篇
  1999年   106篇
  1998年   225篇
  1997年   161篇
  1996年   91篇
  1995年   63篇
  1994年   66篇
  1993年   67篇
  1992年   42篇
  1991年   47篇
  1990年   35篇
  1989年   25篇
  1988年   31篇
  1987年   36篇
  1986年   36篇
  1985年   13篇
  1984年   22篇
  1983年   20篇
  1982年   18篇
  1981年   11篇
  1980年   11篇
  1979年   13篇
  1978年   15篇
  1977年   23篇
  1976年   23篇
  1975年   7篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Na1/2Bi1/2TiO3-based materials have been earmarked for one of the first large-volume applications of lead-free piezoceramics in high-power ultrasonics. Zn2+-doping is demonstrated as a viable route to enhance the thermal depolarization temperature and electromechanically harden (1-y)Na1/2Bi1/2TiO3-yBaTiO3 (NBT100yBT) with a maximum achievable operating temperature of 150 °C and mechanical quality factor of 627 for 1 mole % Zn2+-doped NBT6BT. Although quenching from sintering temperatures has been recently touted to enhance TF-R, with quenching the doped compositions featuring an additional increase in TF-R by 17 °C, it exhibits negligible effect on the electromechanical properties. The effect is rationalized considering the missing influence on conductivity and therefore, negligible changes in the defect chemistry upon quenching. High-resolution diffraction indicates that Zn2+-doped samples favor the tetragonal phase with enhanced lattice distortion, further corroborated by 23Na Nuclear Magnetic Resonance investigations.  相似文献   
2.
Bone formation starts near the end of the embryonic stage of development and continues throughout life during bone modeling and growth, remodeling, and when needed, regeneration. Bone-forming cells, traditionally termed osteoblasts, produce, assemble, and control the mineralization of the type I collagen-enriched bone matrix while participating in the regulation of other cell processes, such as osteoclastogenesis, and metabolic activities, such as phosphate homeostasis. Osteoblasts are generated by different cohorts of skeletal stem cells that arise from different embryonic specifications, which operate in the pre-natal and/or adult skeleton under the control of multiple regulators. In this review, we briefly define the cellular identity and function of osteoblasts and discuss the main populations of osteoprogenitor cells identified to date. We also provide examples of long-known and recently recognized regulatory pathways and mechanisms involved in the specification of the osteogenic lineage, as assessed by studies on mice models and human genetic skeletal diseases.  相似文献   
3.
The aim of this exploratory study has been to investigate the fire properties and environmental aspects of different upholstery material combinations, mainly for domestic applications. An analysis of the sustainability and circularity of selected textiles, along with lifecycle assessment, is used to qualitatively evaluate materials from an environmental perspective. The cone calorimeter was the primary tool used to screen 20 different material combinations from a fire performance perspective. It was found that textile covers of conventional fibres such as wool, cotton and polyester, can be improved by blending them with fire resistant speciality fibres. A new three‐dimensional web structure has been examined as an alternative padding material, showing preliminary promising fire properties with regard to ignition time, heat release rates and smoke production.  相似文献   
4.
5.
Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials.  相似文献   
6.
A known strategy for improving the properties of layered oxide electrodes in sodium-ion batteries is the partial substitution of transition metals by Li. Herein, the role of Li as a defect and its impact on sodium storage in P2-Na0.67Mn0.6Ni0.2Li0.2O2 is discussed. In tandem with electrochemical studies, the electronic and atomic structure are studied using solid-state NMR, operando XRD, and density functional theory (DFT). For the as-synthesized material, Li is located in comparable amounts within the sodium and the transition metal oxide (TMO) layers. Desodiation leads to a redistribution of Li ions within the crystal lattice. During charging, Li ions from the Na layer first migrate to the TMO layer before reversing their course at low Na contents. There is little change in the lattice parameters during charging/discharging, indicating stabilization of the P2 structure. This leads to a solid-solution type storage mechanism (sloping voltage profile) and hence excellent cycle life with a capacity of 110 mAh g-1 after 100 cycles. In contrast, the Li-free compositions Na0.67Mn0.6Ni0.4O2 and Na0.67Mn0.8Ni0.2O2 show phase transitions and a stair-case voltage profile. The capacity is found to originate from mainly Ni3+/Ni4+ and O2-/O2-δ redox processes by DFT, although a small contribution from Mn4+/Mn5+ to the capacity cannot be excluded.  相似文献   
7.
Ferroptosis is gaining followers as mechanism of selective killing cancer cells in a non-apoptotic manner, and novel nanosystems capable of inducing this iron-dependent death are being increasingly developed. Among them, polydopamine nanoparticles (PDA NPs) are arousing interest, since they have great capability of chelating iron. In this work, PDA NPs were loaded with Fe3+ at different pH values to assess the importance that the pH may have in determining their therapeutic activity and selectivity. In addition, doxorubicin was also loaded to the nanoparticles to achieve a synergist effect. The in vitro assays that were performed with the BT474 and HS5 cell lines showed that, when Fe3+ was adsorbed in PDA NPs at pH values close to which Fe(OH)3 begins to be formed, these nanoparticles had greater antitumor activity and selectivity despite having chelated a smaller amount of Fe3+. Otherwise, it was demonstrated that Fe3+ could be released in the late endo/lysosomes thanks to their acidic pH and their Ca2+ content, and that when Fe3+ was co-transported with doxorubicin, the therapeutic activity of PDA NPs was enhanced. Thus, reported PDA NPs loaded with both Fe3+ and doxorubicin may constitute a good approach to target breast tumors.  相似文献   
8.
Recent advances in three‐dimensional (3D) printing have enabled the fabrication of interesting structures which are not achievable using traditional fabrication approaches. The 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks, which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through a facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions with a chitosan polymer matrix are achieved. Consequently, the mechanical properties of the 3D printed composites improve when nanogrooved carbon microtubes are used, compared to untreated microtubes. We show that by carefully controlling the coagulation bath, extrusion pressure, printing distance and printed line distance, we can 3D print composite lattices which are composed of well‐defined and separated printed lines. The conductive composite 3D structures with highly customised design presented in this work provide a suitable platform for applications ranging from soft robotics to smart tissue engineering scaffolds. © 2019 Society of Chemical Industry  相似文献   
9.
Shiga-toxin-producing Escherichia coli strains are pathogenic for humans and cause mild to severe illnesses. In this study, the antimicrobial effect of citral, eugenol, and hexanal in combination with heat shock (HS) was evaluated in terms of the growth, biofilm formation, swarming, and expression of virulence genes of STEC serotypes (O157:H7, O103, O111, and O26). Eugenol was the most effective compound against the growth of E. coli strains (MBC = 0.58 to 0.73 mg/mL), followed by citral (MBC = 0.86 to 1.26 mg/mL) and hexanal (MBC = 2.24 to 2.52 mg/mL). Biofilm formation and swarming motility have great variability between STEC strains. Natural compounds—alone or combined with HS—inhibited biofilm formation; however, swarming motility was induced by most treatments. The expression of the studied genes during biofilm formation and swarming under natural antimicrobials was affected but not in a uniform pattern. These treatments could be used to control contamination of STEC and inhibit biofilm formation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号