首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26427篇
  免费   790篇
  国内免费   31篇
电工技术   331篇
综合类   12篇
化学工业   5657篇
金属工艺   525篇
机械仪表   464篇
建筑科学   1162篇
矿业工程   332篇
能源动力   653篇
轻工业   1718篇
水利工程   224篇
石油天然气   120篇
无线电   1676篇
一般工业技术   4088篇
冶金工业   6278篇
原子能技术   269篇
自动化技术   3739篇
  2021年   377篇
  2020年   266篇
  2019年   346篇
  2018年   427篇
  2017年   372篇
  2016年   486篇
  2015年   390篇
  2014年   618篇
  2013年   1674篇
  2012年   943篇
  2011年   1209篇
  2010年   932篇
  2009年   984篇
  2008年   1156篇
  2007年   1070篇
  2006年   982篇
  2005年   890篇
  2004年   750篇
  2003年   724篇
  2002年   716篇
  2001年   466篇
  2000年   349篇
  1999年   425篇
  1998年   428篇
  1997年   416篇
  1996年   443篇
  1995年   447篇
  1994年   447篇
  1993年   429篇
  1992年   418篇
  1991年   259篇
  1990年   395篇
  1989年   381篇
  1988年   325篇
  1987年   393篇
  1986年   348篇
  1985年   442篇
  1984年   463篇
  1983年   397篇
  1982年   378篇
  1981年   301篇
  1980年   302篇
  1979年   359篇
  1978年   301篇
  1977年   241篇
  1976年   226篇
  1975年   248篇
  1974年   217篇
  1973年   224篇
  1972年   169篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
This study was conducted to evaluate the effect of red-wine grape pomaces on the quality and sensory attributes of beef hamburger patties. Both phenolic content and antioxidant activity were assessed using Syrah, Merlot and Cabernet Sauvignon pomaces. Following the assessment, hamburger patties were prepared with Merlot pomace at 0%, 2% and 4% for the patty quality and sensory attributes. Grape seeds possessed significantly higher phenolics and antioxidant activities over the seedless pomace (P < 0.05), whereas no significant difference was found for phenolics and antioxidant activities within the seeds and seedless pomaces. The patty pH decreased as the pomace was added for 2% and 4%. Colour values (L*, a* and b*) of patties lowered as the pomace was added. Allo-Kramer shear force and hardness values increased while cooking yield decreased (P < 0.05) with the addition of pomace. No significant difference between control and Merlot patties was found for flavour, juiciness and colour, whereas lower sensory attributes were observed for texture, taste and overall acceptability. It is observed that the addition of fermented red-wine grape pomace provides hamburger patties with health promoting factors such as antioxidant and other functional components, but it also provided darker, sourer and lower cooking yield.  相似文献   
2.
This review examines the application, limitations, and potential alternatives to the Hagberg–Perten falling number (FN) method used in the global wheat industry for detecting the risk of poor end-product quality mainly due to starch degradation by the enzyme α-amylase. By viscometry, the FN test indirectly detects the presence of α-amylase, the primary enzyme that digests starch. Elevated α-amylase results in low FN and damages wheat product quality resulting in cakes that fall, and sticky bread and noodles. Low FN can occur from preharvest sprouting (PHS) and late maturity α-amylase (LMA). Moist or rainy conditions before harvest cause PHS on the mother plant. Continuously cool or fluctuating temperatures during the grain filling stage cause LMA. Due to the expression of additional hydrolytic enzymes, PHS has a stronger negative impact than LMA. Wheat grain with low FN/high α-amylase results in serious losses for farmers, traders, millers, and bakers worldwide. Although blending of low FN grain with sound wheat may be used as a means of moving affected grain through the marketplace, care must be taken to avoid grain lots from falling below contract-specified FN. A large amount of sound wheat can be ruined if mixed with a small amount of sprouted wheat. The FN method is widely employed to detect α-amylase after harvest. However, it has several limitations, including sampling variability, high cost, labor intensiveness, the destructive nature of the test, and an inability to differentiate between LMA and PHS. Faster, cheaper, and more accurate alternatives could improve breeding for resistance to PHS and LMA and could preserve the value of wheat grain by avoiding inadvertent mixing of high- and low-FN grain by enabling testing at more stages of the value stream including at harvest, delivery, transport, storage, and milling. Alternatives to the FN method explored here include the Rapid Visco Analyzer, enzyme assays, immunoassays, near-infrared spectroscopy, and hyperspectral imaging.  相似文献   
3.
Tribology Letters - Most asteroids with a diameter larger than $$\sim 300 \ {\mathrm{m}}$$ are rubble piles, i.e., consisting of more than one solid object. All asteroids are rotating but almost...  相似文献   
4.
Biomaterials with dynamically tunable properties are critical for a range of applications in regenerative medicine and basic biology. In this work, we show the reversible control of gelatin methacrylate (GelMA) hydrogel stiffness through the use of DNA crosslinkers. We replaced some of the inter-GelMA crosslinks with double-stranded DNA, allowing for their removal through toehold-mediated strand displacement. The crosslinks could be restored by adding fresh dsDNA with complementary handles to those on the hydrogel. The elastic modulus (G’) of the hydrogels could be tuned between 500 and 1000 Pa, reversibly, over two cycles without degradation of performance. By functionalizing the gels with a second DNA strand, it was possible to control the crosslink density and a model ligand in an orthogonal fashion with two different displacement strands. Our results demonstrate the potential for DNA to reversibly control both stiffness and ligand presentation in a protein-based hydrogel, and will be useful for teasing apart the spatiotemporal behavior of encapsulated cells.  相似文献   
5.
6.
Mesoscale order can lead to emergent properties including phononic bandgaps or topologically protected states. Block copolymers offer a route to mesoscale periodic architectures, but their use as structure directing agents for metallic materials has not been fully realized. A versatile approach to mesostructured metals via bulk block copolymer self-assembly derived ceramic templates, is demonstrated. Molten indium is infiltrated into mesoporous, double gyroidal silicon nitride templates under high pressure to yield bulk, 3D periodic nanocomposites as free-standing monoliths which exhibit emergent quantum-scale phenomena. Vortices are artificially introduced when double gyroidal indium metal behaves as a type II superconductor, with evidence of strong pinning centers arrayed on the order of the double gyroid lattice size. Sample behavior is reproducible over months, showing high stability. High pressure infiltration of bulk block copolymer self-assembly based ceramic templates is an enabling tool for studying high-quality metals with previously inaccessible architectures, and paves the way for the emerging field of block-copolymer derived quantum metamaterials.  相似文献   
7.
Present assembly systems are often based on rigid, line-based approaches and are hindered in their reconfiguration capability. Line-less Mobile Assembly Systems (LMAS) are a novel approach for assembly organization. They improve flexibility through mobile resources, permitting spatiotemporal freedom in scheduling and resource assignment. This paper presents a method for a priori assessment of LMAS during the early stages of the assembly system design process. The method applies a modified, extended mean value analysis to a closed queuing network representation of LMAS to estimate performance. The method is validated model analysis and comparison on two use cases indicating plausible model behavior.  相似文献   
8.
The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.  相似文献   
9.
Inspired by the incorporation of metallocene functionalities into a variety of bioactive structures, particularly antimicrobial peptides, we endeavored to broaden the structural variety of quaternary ammonium compounds (QACs) by the incorporation of the ferrocene moiety. Accordingly, 23 ferrocene-containing mono- and bisQACs were prepared in high yields and tested for activity against a variety of bacteria, including Gram-negative strains and a panel of clinically isolated MRSA strains. Ferrocene QACs were shown to be effective antiseptics with some displaying single-digit micromolar activity against all bacteria tested, demonstrating yet another step in the expansion of structural variety of antiseptic QACs.  相似文献   
10.
Ca3Co4O9 is a promising p-type thermoelectric oxide material having intrinsically low thermal conductivity. With low cost and opportunities for automatic large scale production, thick film technologies offer considerable potential for a new generation of micro-sized thermoelectric coolers or generators. Here, based on the chemical composition optimized by traditional solid state reaction for bulk samples, we present a viable approach to modulating the electrical transport properties of screen-printed calcium cobaltite thick films through control of the microstructural evolution by optimized heat-treatment. XRD and TEM analysis confirmed the formation of high-quality calcium cobaltite grains. By creating 2.0 at% cobalt deficiency in Ca2.7Bi0.3Co4O9+δ, the pressureless sintered ceramics reached the highest power factor of 98.0 μWm?1 K-2 at 823 K, through enhancement of electrical conductivity by reduction of poorly conducting secondary phases. Subsequently, textured thick films of Ca2.7Bi0.3Co3.92O9+δ were efficiently tailored by controlling the sintering temperature and holding time. Optimized Ca2.7Bi0.3Co3.92O9+δ thick films sintered at 1203 K for 8 h exhibited the maximum power factor of 55.5 μWm?1 K-2 at 673 K through microstructure control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号