首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   2篇
石油天然气   18篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
排序方式: 共有18条查询结果,搜索用时 78 毫秒
1.
为分析不同沉积与成岩作用改造下致密砂岩储层的孔喉类型及其参数差异,利用物性、铸体薄片、扫描电镜、恒速压汞、图像粒度与X衍射实验结果,对比了鄂尔多斯盆地合水地区延长组长8储层和薛岔地区延长组长6储层的孔喉类型,定量评价了孔喉参数,揭示了形成原因。结果表明,合水地区长8储层孔隙更为发育,粒间孔、溶蚀孔、晶间孔和微孔、弱压实成因缩颈状喉道和溶蚀成因、粘土胶结成因管束状喉道含量高;薛岔地区长6储层的孔隙类型少且发育程度较差,压实成因片状、弯片状喉道含量高。两个区块的孔隙参数差异小,喉道参数差异大,前者大喉道更为发育,喉道差异大,孔喉比大,对渗透率起贡献的喉道分布范围更宽。相同渗透率条件下,前者的平均喉道半径、主流喉道半径和孔喉比大于后者。沉积水动力条件、粒度、碎屑组分、填隙物、成岩作用类型及其改造程度是两个研究区孔隙发育程度不同、喉道类型差异和孔喉参数表现出不同特征的主要原因。  相似文献   
2.
液相欠平衡钻井井底欠压值的确立和控制直接决定着钻井的成败。目前钻井行业井底欠压值确立方法一般基于现场经验,误差较大,在现场应用时,其控制调节缺乏理论依据。欠压值过大,易导致井壁失稳,出现井控风险及速敏、应力敏感等储层伤害问题;欠压值过小,易导致钻井液进入储层,无法实现有效保护储层及提高机械钻速的目的。为此,利用井眼力学稳定及井控风险分析确定欠压值上限,利用储层毛细管力确立欠压值下限,建立液相欠平衡钻井合理欠压值设计新方法,并结合塔里木盆地塔北地区X井现场数据进行分析优化。结果表明,此欠压值设计新方法能够为欠平衡钻井现场设计提供理论指导,避免了单纯依靠经验值确立欠平衡钻井欠压值导致的钻井事故或储层保护效果不好等问题。  相似文献   
3.
致密油藏裂缝动态渗吸排驱规律   总被引:5,自引:4,他引:1  
为明确裂缝性致密油藏注水动态渗吸特征,解决水驱采收率低下等问题,以姬塬油田延长组长6油层组为研究对象,采用高压压汞、核磁共振T2谱、扫描电镜和铸体薄片分析等方法研究了目标储层微观孔隙结构特征,建立了3类储层分类评价标准,并对代表性岩心开展了基于核磁共振在线扫描的动态渗吸实验,模拟了水驱过程中裂缝-基质间的动态渗吸过程,从微观孔隙尺度定量表征了不同孔径孔隙原油的动用程度,评价了8个储层物性参数对动态渗吸效率的影响程度。实验结果表明,目标储层孔隙结构可划分为3类,随着储层孔隙结构变差,孔隙类型逐渐单一化、储集性能和渗流能力不断降低,导致动态渗吸效率不断下降。Ⅰ类和Ⅱ类储层动态渗吸过程可以划分为3个阶段:大孔隙在驱替作用下采出程度快速上升阶段、微小孔隙在渗吸作用下采出程度缓慢上升阶段和动态渗吸平衡阶段;而Ⅲ类储层在实验中仅存在前2个阶段。随着储层孔隙结构变差,微小孔隙动用比例增大,渗吸作用明显,虽然对岩心总采收率贡献程度增加,但总采收率低下。渗透率、可动原油饱和度、孔隙半径、可动原油孔隙度、黏土矿物含量和润湿性是影响动态渗吸效率的主要因素,对渗吸效率的影响程度依次逐渐减弱。分选系数和孔隙度是影响动态渗吸效率的次要因素,对渗吸效率的影响程度相对较小。  相似文献   
4.
自进式旋转射流钻头破岩效果   总被引:9,自引:5,他引:4  
利用有限的排量实现高效的破岩效率并尽可能增大径向水平井眼的延伸能力是实施新型径向水平井技术的关键,射流钻头的性能是该关键技术要解决的首要问题。在多孔射流钻头的基础上,设计研制了自进式旋转射流钻头,分析了其工作原理,并通过试验对自进式单孔旋转射流钻头、自进式单孔直旋混合射流钻头、自进式多孔旋转射流钻头以及自进式多孔直旋混合射流钻头随时间、射流压力和喷距的破岩钻孔规律进行了研究。研究结果表明:当喷距范围为9~12 mm、射流压力为20~35 MPa时,在相同的射流压力和喷距条件下,自进式多孔直旋混合射流钻头的破岩效果优于自进式多孔旋转射流钻头,其中1+4孔的多孔直旋混合射流钻头的破岩效果最好。设计得到的新型射流钻头可以提高径向水平井的钻进速度。  相似文献   
5.
为了提高注CO2驱替效率及驱替成功率,开展了影响驱替效率的井筒压力温度分布及影响因素研究。针对CO2特殊的物理性质,选用基于赫姆霍兹自由能的Span-Wagner状态方程,将井筒传热、压力与CO2物性参数耦合迭代计算,建立了注CO2井筒温度压力分布的数学预测模型。该模型能够预测井筒温度压力及其他物性参数,应用该模型预测井筒各点温度压力,并与江苏草舍油田草8井现场2次实测结果对比,其温度误差均小于1%,压力最大误差不超过1.6%,表明该模型能够满足现场应用要求。利用该模型可以研究注入温度、注入压力、注入速度及注入时间等工艺参数对井底压力温度的影响规律,实现系统敏感性分析。研究表明,建立的模型具有很高的精度,对提高CO2驱替效率具有指导作用,并适用于(超临界)CO2钻井、压裂过程中井筒温度压力预测及影响因素分析。  相似文献   
6.
超临界CO_2径向水平井钻井技术应用前景分析   总被引:2,自引:0,他引:2  
超临界CO2钻井技术具有破岩门限压力低和破岩速度快等特点,并能有效控制井底压力、保护储层、提高渗透率,进而提高采收率。通过对微小井眼径向水平井钻井系统特点的分析,结合超临界CO2能够降低管内摩阻、可以注入压力以及在井底超临界CO2状态摩阻下易于在地层内前行等特点,分析了超临界CO2微小井眼径向水平井钻井技术的可行性、技术优势及应用前景。分析结果表明,微小井眼径向水平井钻井技术可使死井复活,能扩大泄油面积,提高单井油气产量,降低钻井成本;超临界CO2微小井眼径向水平井钻井技术不仅可以提高钻井速度,而且能够降低破岩所需的喷射压力,是未来钻井技术重要的发展方向。  相似文献   
7.
酸性气藏一般位于海相沉积,钻井液安全密度窗口极窄,钻井过程中酸性气体易侵入井筒,发生气侵后井筒流动变得十分复杂,易造成井涌、井喷等井下故障。为实现气侵时井筒流动的准确预测与控制,将井筒流动与地层非达西渗流耦合,井筒流动、传热和流体物性耦合,建立了酸性气体侵入井筒瞬态多相流动模型,并引入酸性气体溶解度公式,给出了模型的求解方法。利用某井的基本数据,模拟了酸性气体气侵时的环空气液两相瞬态流动参数的变化特征,并对酸性气体气侵时的瞬态流动影响因素进行了敏感性分析。结果表明:酸性气体溶解度大,侵入后更加隐蔽,不易被检测到,但靠近井口处酸性气体溶解度降低,酸性气体大量析出,体积迅速膨胀,井筒压力降低迅速,井控更加危险。研究结果可为酸性气藏钻井井控参数设计提供指导。   相似文献   
8.
水力喷射侧钻径向水平井眼延伸能力   总被引:1,自引:0,他引:1  
径向水平井钻井技术的一个主要指标是水平井眼的延伸长度。根据水力喷射侧钻径向水平井技术的特点,基于流体力学、计算流体力学及射流动力学等理论,对射流钻头自进力进行了理论分析,建立了径向水平井眼极限延伸长度的计算模型,分析了摩擦因数、后向孔眼个数、后向孔眼直径、后向孔眼扩散角和流量等参数对径向水平井眼极限延伸长度的影响。结果表明:改变系统的后向孔眼个数、后向孔眼直径和流量,可以使径向水平井的极限延伸长度发生明显改变;改变后向孔眼扩散角,只能在一定范围内改变径向水平井的极限延伸长度。所建立的模型和得出的规律可以为径向水平井的施工设计及射流钻头结构优化等提供理论指导。  相似文献   
9.
针对煤层气井施工过程中易垮塌、裂缝渗漏及水平段携岩困难等问题,研究并应用了泡沫钻井液配合生物酶钻井液技术。利用泡沫钻井液能够降低正压差,降低储层的应力敏感性,减少滤液侵入储层和水锁伤害的特点,并且生物酶可对钻进过程中侵入地层和粘附在井壁上的钻井液物质进行生物降解,实现解堵。在优选生物酶的基础上,将泡沫钻井液应用于WL05-1H井进行了试验研究。研究结果表明,在水平段长达627 m的长井段煤层钻进过程中,未进行短起下,井眼稳定通畅,泡沫钻井液防塌抑制能力强,悬浮携带能力较强,能满足施工需要;泡沫钻井液配合生物酶技术具有很好的降解能力,能够很好地保护煤储层的原始状态。泡沫钻井液配合生物酶技术为韩城地区水平井钻探提供了技术保障。  相似文献   
10.
针对山前地区深井超深井钻井过程中套管磨损严重的问题,在分析套管磨损机理的基础上,开展了山前地区套管防磨与减磨技术研究,基于技术研究成果及应用实践,得到如下结论:1应用Power V等垂直钻井系统控制井眼轨迹,特别是上部井段的狗腿度和井斜,可明显减小侧向力和磨损量,缩短套管磨损时间;2应综合考虑套管磨损率、磨损系数以及钻杆耐磨带本身的磨损量,优选出效果最优的耐磨带;在狗腿度严重的位置,可考虑采用一定数量的橡胶钻杆卡箍来减轻对套管的磨损;3山前地区钻井液采用CX-300减磨剂能够显著降低磨损速率,减轻套管磨损程度,但在不同钻井液体系使用之前应进行优化分析以确定最佳使用量;4在迪那204井使用高密度钻井液体系,全部采用优选的高密度重晶石粉代替铁矿粉作为加重剂,整个钻进过程中未出现钻具及套管磨损,迪那204井易损件消耗量仅为邻井迪那203井的左右,防磨减磨效果非常显著。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号