首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
无线电   4篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The high phonon energy oxide of B2O3 is introduced into the Er3+/Ce3+co-doped tellurite-niobium glasses with composition of TeO2-Nb2O5-ZnO-Na2O.The absorption spectra,1.53 μm band fluorescence spectra,fluorescence lifetime and Raman spectra of Er3+in glass samples are measured together with the calculations of Judd-Ofelt spectroscopic parameter,stimulated emission and absorption cross-sections,which evaluate the effect of B2O3 on the 1.53 μm band spectroscopic properties of Er3+.It is shown that the introduction of an appropriate amount of B2O3 can further improve the 1.53 μm band fluorescence intensity through an enhanced phonon-assisted energy transfer(ET) between Er3+/Ce3+ions.The results indicate that the prepared Er3+/Ce3+co-doped tellurite-niobium glass with an appropriate amount of B2O3 is a potential gain medium for the 1.53 μm bandbroad erbium-doped fiber amplifier(EDFA).  相似文献   
2.
The Er^3+/Ce^3+ co-doped tellurite-based glasses (TeO2-Bi2O3-TiO2) modified with various WO3 contents are prepared using conventional melt-quenching technique. The X-ray diffraction (XRD) patterns and Raman spectra of glass sam- ples are measured to investigate the structures. The absorption spectra, the up-conversion emission spectra, the 1.53 /am band fluorescence spectra and the lifetime of Er3+:4113/2 level are measured, and the amplification quality factors of Er3+ are calculated to evaluate the effect of WO3 contents on the 1.53 μm band spectroscopic properties. With the in- troduction of WO3, it is found that the prepared tellurite-based glasses maintain the amorphous structure, while the 1.53 μm band fluorescence intensity of Er3+ is improved evidently, and the fluorescence full width at half maximum (FWHM) is broadened accordingly. In addition, the prepared tellurite-based glass samples have larger bandwidth qual- ity factor than silicate and germanate glasses. The results indicate that the prepared Er3+/Ce3+ co-doped tellurite-based glass with a certain amount of WO3 is an excellent gain medium applied for the 1.53 μm band Er3+-doped fiber ampli- fier (EDFA).  相似文献   
3.
Er3+/Ce3+ co-doped tellurite glasses with composition of TeO2-GeO2-Li2O-Nb2O5 were prepared using conventional melt-quenching technique for potential applications in Er3+-doped fiber amplifier (EDFA). The absorption spectra, up-conversion spectra and 1.53 µm band fluorescence spectra of glass samples were measured. It is shown that the 1.53 µm band fluorescence emission intensity of Er3+-doped tellurite glass fiber is improved obviously with the introduction of an appropriate amount of Ce3+, which is attributed to the energy transfer (ET) from Er3+ to Ce3+. Meanwhile, the 1.53 µm band optical signal amplification is simulated based on the rate and power propagation equations, and an increment in signal gain of about 2.4 dB at 1 532 nm in the Er3+/Ce3+ co-doped tellurite glass fiber is found. The maximum signal gain reaches 29.3 dB on a 50 cm-long fiber pumped at 980 nm with power of 100 mW. The results indicate that the prepared Er3+/Ce3+ co-doped tellurite glass is a good gain medium applied for 1.53 µm broadband and high-gain EDFA.  相似文献   
4.
A model of Er3+-doped chalcogenide glass (GasGe20Sb10S65) microstructured optical fiber (MOF) amplifier under the excitation of 980 nm is presented to demonstrate the feasibility of it applied for 1.53 μm band optical communications. By solving the Er3+ population rate equations and light power propagation equations, the amplifying performance of 1.53 μm band signals for Er3+-doped chalcogenide glass MOF amplifier is investigated theoretically. The results show that the Er6+-doped chalcogenide glass MOF exhibits a high signal gain and broad gain spectrum, and its maximum gain for small-signal input (-40 dBm) exceeds 22 dB on the 300 cm MOF under the excitation of 200 mW pump power Moreover, the relations of 1.53 μm signal gain with fiber length, input signal power and pump power are analyzed. The results indicate that the Er3+-doped Ga5Ge20Sb10S65 MOF is a promising gain medium which can be applied to broadband amplifiers operating in the third communication window.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号