首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
无线电   5篇
一般工业技术   2篇
  2023年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
采用水热法合成了以4,4′-联苯二甲酸(BPDC)为配体的Ni-金属有机框架(MOF),利用低成本、无污染的物理超声法在不改变Ni-MOF晶体结构的前提下对其进行改性,使块状Ni-MOF表面产生孔隙,改善Ni-MOF表面微/纳米结构,提高其电化学性能。通过扫描电子显微镜(SEM)图、X射线衍射(XRD)谱、循环伏安(CV)曲线和恒电流充放电(GCD)曲线分析了改性前后Ni-MOF的微结构形貌和电化学性能。结果表明,经过超声处理后,Ni-MOF的比表面积从40.6 m^2·g^-1增加到65.8 m^2·g^-1,平均孔径从12 nm增加到22 nm。在0.5 A·g^-1电流密度下,超声处理后Ni-MOF电极比电容从420 F·g^-1增加到515 F·g^-1,提高了22.6%,电荷转移电阻明显降低,从25.11Ω降低到15.51Ω。因此,物理超声法可有效改善Ni-MOF表面微/纳米结构,提高其电化学性能。  相似文献   
2.
以葡萄糖为前驱体、柠檬酸镁为模板,先预碳化再结合KOH活化制备高性能多孔碳电极材料。通过扫描电子显微镜(SEM)研究掺杂柠檬酸镁前后样品的形貌结构,发现通过柠檬酸镁模板法制备的活性碳孔径分布更为均匀。通过氮气吸脱附测试发现,以柠檬酸镁为模板,活性碳的比表面积由135.6 m2/g提高到326.13 m2/g。电化学测试结果表明,以柠檬酸镁为模板,电极材料的双电层电容特性得到明显提高。在电流密度为0.5 A/g时,AC-Mg的比电容139.88 F/g远大于AC的比电容31 F/g;在10 A/g的电流密度下,AC比电容保持率为72.5%,AC-Mg比电容保持率增加到87%,电极材料的电阻从1.589Ω下降到1.021Ω,具有更好的导电性,在进行了5 000圈循环测试后,AC-Mg比电容保持率仍为96%。  相似文献   
3.
采用简单的一步水热法合成了自支撑的氧化锌纳米棒(ZnO NRs)@还原氧化石墨烯(rGO)复合材料,通过旋涂法制备ZnO@rGO/聚偏二氟乙烯(PVDF)柔性复合薄膜压电纳米发电机。研究结果表明,ZnO@rGO/PVDF柔性复合薄膜压电纳米发电机的输出性能随ZnO@rGO掺杂质量先增大后减小,当ZnO@rGO的质量分数为3.0%时,输出电压可达9.06 V,输出电流可达0.74μA,与仅掺杂3.0%ZnO NRs的ZnO/PVDF纳米发电机相比,其输出电压和电流分别提高了120%和124%。当负载电阻为10 MΩ时,ZnO@rGO/PVDF柔性复合薄膜压电纳米发电机输出功率最大为5.79μW。经过4 000次循环测试表明,该文所制备ZnO@rGO/PVDF柔性复合薄膜压电纳米发电机的输出性能稳定。该纳米发电机可以监测人体行走和跑步姿势,记录运动次数。有望作为自供电压力传感器件植入可穿戴电子设备中。  相似文献   
4.
针对压电陶瓷在实现微纳运动中普遍存在的不确定非线性因素,提出了一种新型的非线性鲁棒控制器。该控制器利用非奇异终端滑模控制实现了控制器的鲁棒性,采用时延估计技术实现了对未知项的实时补偿和无模型控制,有利于工程应用,并用鲁棒精密微分器实现对全状态的估计。运用Lyapunov稳定性理论证明了系统的闭环稳定性。半物理仿真实验表明,该控制器能够控制压电陶瓷实现亚微米精度的运动控制。理论分析和实践证明,提出的控制策略具有无模型、高精度和鲁棒性强的控制效果,工程应用性强,能有效应用于压电陶瓷驱动的微纳操作系统中。  相似文献   
5.
金属氧化物理论上具有较高的比电容,是赝电容超级电容器的主要电极材料,不同的沉积方法将直接影响到其电化学性能。首先采用阳极氧化法制备高度有序的TiO_2纳米管阵列作为基底,分别采用化学沉积法和电化学沉积法(差分脉冲伏安法)沉积NiO,测试并比较所沉积NiO的电化学性能。电子扫描显微镜表征发现化学沉积的NiO颗粒较大未能均匀沉积,电化学沉积法沉积形成的NiO颗粒较小且均匀附着在纳米管中。恒流充放电结果显示电化学沉积法制备的复合电极获得了60mF/cm~2的比电容,可以用作电化学超级电容器的电极材料。  相似文献   
6.
采用溶液浇注法,以丙烯腈(AN)和聚乙二醇(PEG)制备了聚丙烯腈(PAN)-b-聚乙二醇-b-聚丙烯腈三嵌段共聚物(PAN-b-PEG-b-PAN),以其作为聚合物基体,以四乙基四氟硼酸铵(TEABF_4)为电解质盐,采用二甲基甲酰胺(DMF)作为增塑剂,制备了TEABF_4/PAN-b-PEG-b-PAN凝胶聚合物电解质。以活性炭作为电极制备柔性超级电容器,通过形貌表征和电化学性能测试探究TEABF_4与PAN-b-PEG-b-PAN的最佳质量配比。结果表明:当TEABF_4与PAN-b-PEG-b-PAN质量比为0.5时其性能最佳,电导率可达5.2×10-2S/cm、比电容为96.18F/g、能量密度为90.30Wh/Kg,5000次循环电容保持率为89%。  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号