首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   6篇
无线电   10篇
  2015年   1篇
  2014年   9篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
化学机械抛光是集成电路制造工艺中十分精密的技术。在本文中,为了改善抛光效果,分表讨论了非离子表面活性剂和氧化剂在CMP过程中作用。我们主要分析了非离子表面活性剂对片内非均匀性和表面粗糙度的影响。同时,我们从静态腐蚀速率、电化学曲线和剩余高低差的角度,讨论了在不加BTA条件下,不同氧化剂浓度的抛光液的钝化特性。实验结果明显地表明:加入了非离子表面活性剂的抛光液,更有利于改善抛光后的片内非均匀性和表面粗糙度,并确定2vol%体积分数是比较合适的浓度。当抛光液中氧化剂浓度超过3vol%,抛光液拥有较好的钝化能力,能够有效减小高低差,并有助于获得平整和光滑的表面。根据这些实验结果,非离子表面活性剂和氧化剂的作用进一步被了解,将有助于抛光液性能的改善。  相似文献   
2.
We propose the action mechanism of Cu chemical mechanical planarization(CMP) in an alkaline solution.Meanwhile,the effect of abrasive mass fraction on the copper removal rate and within wafer non-uniformity(WIWNU) have been researched.In addition,we have also investigated the synergistic effect between the applied pressure and the FA/O chelating agent on the copper removal rate and WIWNU in the CMP process.Based on the experimental results,we chose several concentrations of the FA/O chelating agent,which added in the slurry can obtain a relatively high removal rate and a low WIWNU after polishing,to investigate the planarization performance of the copper slurry under different applied pressure conditions.The results demonstrate that the copper removal rate can reach 6125 °/min when the abrasive concentration is 3 wt.%.From the planarization experimental results,we can see that the residual step height is 562 ° after excessive copper of the wafer surface is eliminated.It denotes that a good polishing result is acquired when the FA/O chelating agent concentration and applied pressure are fixed at 3 vol% and 1 psi,respectively.All the results set forth here are very valuable for the research and development of alkaline slurry.  相似文献   
3.
Abstract: The stability of a novel low-pH alkaline slurry (marked as slurry A, pH = 8.5) for copper chemical mechanical planarization was investigated in this paper. First of all, the stability mechanism of the alkaline slurry was studied. Then many parameters have been tested for researching the stability of the slurry through comparing with a traditional alkaline slurry (marked as slurry B, pH = 9.5), such as the pH value, particle size and zeta potential. Apart from this, the stability of the copper removal rate, dishing, erosion and surface roughness were also studied. All the results show that the stability of the novel low-pH alkaline slurry is better than the traditional alkaline slurry. The working-life of the novel low-pH alkaline slurry reaches 48 h.  相似文献   
4.
The copper removal rate and uniformity of two types copper slurries were investigated, which was performed on the 300 mm chemical mechanical planarization (CMP) platform. The experiment results illustrate that the removal rate of the two slurries is nearly the same. Slurry A is mainly composed ofa FA/OI1 type chelating agent and the uniformity reaches to 88.32%. While the uniformity of slurry B is 96.68%, which is mainly composed of a FA/OV type chelating agent. This phenomenon demonstrates that under the same process conditions, the uniformity of different slurries is vastly different. The CMP performance was evaluated in terms of the dishing and erosion values. In this paper, the relationship between the uniformity and the planarization was deeply analyzed, which is mainly based on the endpoint detection mechanism. The experiment results reveal that the slurry with good uniformity has low dishing and erosion. The slurry with bad uniformity, by contract, increases Cu dishing significantly and causes copper loss in the recessed region. Therefore, the following conclusions are drawn: slurry B can improve the wafer leveling efficiently and minimize the resistance and current density along the line, which is helpful to improve the device yield and product reliability. This investigation provides a guide to improve the uniformity and achieve the global and local planarization. It is very significant to meet the requirements for 22 nm technology nodes and control the dishing and erosion efficiently.  相似文献   
5.
主要研究了碱性抛光液各组分体积分数对其有效存储时间的影响。实验中每隔两个月测试了抛光液的pH值、平均粒径和Cu膜去除速率等参数随存储时间的变化值。研究表明:FA/O螯合剂体积分数是影响抛光液有效存储时间的主要因素,螯合剂体积分数越高抛光液的有效存储时间越短。在FA/O螯合剂体积分数较低时(8%),Cu布线碱性抛光液的有效存储时间在半年以上,基本能够符合产业化要求。SiO2磨料体积分数和非离子型表面活性剂体积分数是影响碱性抛光液有效存储时间的次要因素,对其有效存储时间影响不明显。  相似文献   
6.
采用自主研发的碱性铜抛光液,在E460E机台上研究了不同磨料质量分数对铜和钽抛光速率与膜厚一致性的影响;分析了磨料质量分数为2%,2.8%和3.6%时,膜厚一致性对平坦化的影响。抛光结果显示:当磨料质量分数高于2.8%时,抛光液开始对钽进行有效的抛光;随着磨料浓度的增加,抛光液的膜厚一致性提高趋于平缓。磨料质量分数为2.8%和3.6%时,抛光后膜厚一致性变好,碟形坑满足工业生产要求;磨料质量分数为2%时,抛光后膜厚一致性比抛光前恶化,碟形坑相对较大。由此可见,当磨料质量分数为2.8%时,抛光液能有效去除残余铜,并且抛光后膜厚一致性好,有利于实现平坦化,尤其是对提高成品率和优品率有重要的作用。  相似文献   
7.
A novel alkaline copper slurry that possesses a relatively high planarization performance is investigated under a low abrasive concentration.Based on the action mechanism of CMP,the feasibility of using one type of slurry in copper bulk elimination process and residual copper elimination process,with different process parameters,was analyzed.In addition,we investigated the regular change of abrasive concentration effect on copper and tantalum removal rate and within wafer non-uniformity(WIWNU) in CMP process.When the abrasive concentration is 3 wt%,in bulk elimination process,the copper removal rate achieves 6125 °/min,while WIWNU is 3.5%,simultaneously.In residual copper elimination process,the copper removal rate is approximately 2700°/min,while WIWNU is 2.8%.Nevertheless,the tantalum removal rate is 0 °/min,which indicates that barrier layer isn’t eliminated in residual copper elimination process.The planarization experimental results show that an excellent planarization performance is obtained with a relatively high copper removal rate in bulk elimination process.Meanwhile,after residual copper elimination process,the dishing value increased inconspicuously,in a controllable range,and the wafer surface roughness is only 0.326 nm(sq < 1 nm) after polishing.By comparison,the planarization performance and surface quality of alkaline slurry show almost no major differences with two kinds of commercial acid slurries after polishing.All experimental results are conducive to research and improvement of alkaline slurry in the future.  相似文献   
8.
研究了三种不同稀释倍数的弱碱性铜粗抛液,原液采用商用FA/O型铜抛光液,稀释倍数分别为1倍、3倍和5倍。基于化学机械抛光(CMP)作用机理,在相同工艺条件下分析了三种粗抛液对铜膜的平均去除速率、片内非均匀性(WIWNU)和平坦化性能等指标的影响。铜膜的抛光实验结果表明:稀释3倍的弱碱性铜粗抛液对铜膜平均去除速率高达869.76 nm/min,片内非均匀性仅为2.32%。四层图形片的平坦化测试结果显示,图形片初始高低差为312.5 nm,采用稀释3倍的粗抛液抛光20 s后,有效消除高低差261.5 nm,基本实现了全局平坦化,满足45 nm技术节点的要求。  相似文献   
9.
蒋勐婷  刘玉岭 《半导体学报》2014,35(12):126001-5
Chemical mechanical planarization(CMP) is a critical process in deep sub-micron integrated circuit manufacturing. This study aims to improve the planarization capability of slurry, while minimizing the mechanical action of the pressure and silica abrasive. Through conducting a series of single-factor experiments, the appropriate pressure and the optimum abrasive concentration for the alkaline slurry were confirmed. However, the reduced mechanical action may bring about a decline of the polishing rate, and further resulting in the decrease of throughput.Therefore, we take an approach to compensating for the loss of mechanical action by optimizing the composition of the slurry to enhance the chemical action in the CMP process. So 0.5 wt% abrasive concentration of alkaline slurry for copper polishing was developed, it can achieve planarization efficiently and obtain a wafer surface with no corrosion defect at a reduced pressure of 1.0 psi. The results presented here will contribute to the development of a “softer gentler polishing” technique in the future.  相似文献   
10.
研究了一种碱性铜抛光液,其基本组分是硅溶胶磨料、新型FA/O V型螯合剂、非离子表面活性剂和氧化剂(H2O2)。在压力为2 psi(1 psi=6.895 kPa)、抛头转速与抛盘转速分别为97和103 r/min、流量为300 mL/min的条件下,分析了铜膜去除速率随着螯合剂和氧化剂体积分数增加的作用规律。结果表明,加入体积分数2%的螯合剂和体积分数3%的氧化剂时,抛光液具有较好的自钝化能力和较高的铜膜去除速率。同时,研究了工艺参数在抛光过程中对去除速率和片内非均匀性(WIWNU)的影响,平坦化实验的抛光工艺选择压力1.5 psi、抛头和抛盘转速分别为87和93 r/min、流量300 mL/min。实验结果表明:此种抛光液在上述工艺条件下,抛光结束时剩余高低差为63.7 nm,具有较好的平坦化效果,对抛光液商业化提供了参考价值。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号