首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
  国内免费   1篇
化学工业   3篇
金属工艺   2篇
一般工业技术   2篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
排序方式: 共有7条查询结果,搜索用时 62 毫秒
1
1.
气凝胶连续的纳米多孔网络结构使得其具备很多独特的性能。气凝胶种类繁多以及制备方法的多样性、广泛的应用前景等使得其成为当今材料科学领域的研究热点之一。本文主要从气凝胶的种类出发,通过论述各类气凝胶的制备工艺、性能及其应用前景来介绍气凝胶的研究进展,同时探讨了目前气凝胶研究中存在的问题以及今后的主要研究发展方向。  相似文献   
2.
3.
气凝胶材料被誉为"21世纪改变世界的神奇材料",其独特的超多孔结构使其具备众多优异特性,有着广泛的应用前景.然而,气凝胶材料自身结构的脆弱和繁琐的制备流程严重制约了其普及应用.本工作概述了气凝胶材料的发展现状,总结了气凝胶材料常用的几种结构强化策略,介绍了近年新出现的仿生强化、浓差诱导强化和微波烧结等工艺优化增强等方法,并展望了气凝胶材料的未来发展前景.  相似文献   
4.
文章为合成性能优异的复合气凝胶提供了思路:以合成的纤维素气凝胶为基体,采用溶胶-凝胶方法结合冷冻干燥的方式,制备了不同质量分数的纤维素/ZrO2气凝胶复合材料。对所制备的复合气凝胶材料采用力学测试机、傅里叶红外光谱仪、比表面积测试仪(BET)以及扫描电子显微镜(SEM)研究了材料的性能。结果表明,复合气凝胶具备较大的比表面积,可达154m2/g;压缩测试结果显示复合气凝胶材料的压缩强度较纤维素基体均有明显提高,最大压缩强度可达202.19 kPa,提高了将近4倍。优异的综合性能大大扩展了纤维素/ZrO2气凝胶材料的应用范围。  相似文献   
5.
纳米材料在纳米尺度展现出的特殊性质, 相较于宏观尺度材料表现出众多优异特性, 在力学、声学、光学、磁学、电学、热学等各种领域具有良好的应用前景。纳米材料的仿生自组装技术模拟活体生命活动, 使纳米材料基于非共价键的相互作用, 自发形成稳定结构, 现已成为制备纳米材料的主要方法之一。仿生自组装技术是“自上而下”方法中的重要技术手段, 这种合成方式有望代替传统的“自上而下”加工技术, 实现单个原子或分子在纳米尺度上构造特定结构和功能的器件。另外, 仿生自组装技术虽然以化学过程为主, 但又有物理过程, 并且结合了“仿生学”的优点, 具有定向构造纳米材料的特点, 是众多交叉学科的热门研究手段。本文重点介绍了纳米材料在形貌和性能调控中不同的仿生自组装合成策略, 包括屏蔽效应的位相选择自组装、双相界面协同效应的仿生自组装、场诱导定位效应的功能器件一体化制备、光诱导自组装以及羟基氢键驱动的分相自组装, 总结了仿生自组装纳米材料的特性, 归纳了自组装技术在传感器、表面拉曼散射、生物医疗等领域的应用, 并对纳米材料仿生自组装技术的发展前景进行了展望。  相似文献   
6.
气凝胶是具有"固态烟"之称的低密度多孔性固体材料,被称为"世界上最轻的凝聚态材料"。Al2O3气凝胶是一种新型耐高温纳米多孔材料,具有高比表面积、低密度、高孔隙率、高效催化性等优异性能,因此得到了科研人员的广泛关注。文章对Al2O3气凝胶的制备工艺、多组分Al2O3气凝胶材料以及应用等方面进行了综述,指出不同原料和干燥工艺技术对Al2O3气凝胶的影响以及多组分复合Al2O3气凝胶材料对其性能的优化,并展望了Al2O3气凝胶的发展趋势。  相似文献   
7.
能源危机和环境污染是当今人类社会面临的全球性难题,减少二氧化碳(CO2)和其他温室气体的排放,实现碳中和是当务之急。以“能量的提供–储存–消耗–再提供”为目标的“人工生态循环”系统可以通过消耗CO2获取物质和能源并实现循环利用,有助于缓解上述问题。气凝胶材料具有超高孔隙率、超大比表面积和超低密度等特性,其连续三维网络结构不仅能够提供丰富的电荷转移通道,而且可以作为载体来掺杂或负载各种有机或无机活性材料以获得催化性能优异的复合材料,在“人工生态循环”系统,包括光化学、电化学、储能材料等领域具有广泛的应用前景。概述了气凝胶材料在人工生态循环中光化学、电化学、人工固氮、储氢、热电材料等方面的相关应用,并对气凝胶材料的发展前景进行了总结和展望。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号