首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
  国内免费   14篇
综合类   5篇
化学工业   9篇
石油天然气   27篇
一般工业技术   3篇
  2023年   3篇
  2022年   1篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   7篇
  2009年   6篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
以双酚AF(BPAF)、对羟基苯磺酸(PHSA)、聚氧乙烯辛基苯酚醚-10(OP-10)为原料制得乳化降黏剂AFOP-10(阴-非离子型乳化降黏剂),测试了AFOP-10的表面性质和耐温耐盐性能,考察了该降黏剂结构与性能的关系,初步探究了该降黏剂的降黏机理。研究结果表明:乳化降黏剂AFOP-10的HLB值为11.37,浊点(Tk)为75℃,临界胶束浓度(CMC)为0.08 g/L,AFOP-10的表面张力γCMC=30.30 mN/m,具有较好的表面活性。该降黏剂热降解温度高达363℃,单体配比n(BPAF)∶n(PHSA)∶n(OP-10)=1∶6∶9时,降黏剂最高可耐盐浓度为49476 mg/L,用矿化度为8246 mg/L的盐水配制的质量分数1.0%的AFOP-10溶液经300℃老化处理24h后,AFOP-10仍具有良好的活性,降黏率可达98.50%以上。AFOP-10对渤海油田不同油区的油品都有较好的乳化降黏效果,具有良好的普适性。  相似文献   
2.
通过相图分析,确定制备纳米TiO2的微乳液组成为:甲苯、正丁醇以及水的质量百分数分别为88.9%,5.0%和6.1%。以硅胶为载体、钛酸丁酯为原料,通过微乳液法制得平均晶粒度为6.3nm的锐钛矿型纳米TiO2负载催化剂。研究了焙烧温度和m(TiO2)∶m(硅胶)比例对紫外光照射下纳米TiO2降解溶液中苯酚的光催化活性的影响。结果表明,焙烧温度从400℃提高到700℃时,TiO2晶粒度从6.3nm增加到的83.2nm,而催化活性先增大后降低,在450℃时催化活性最大,苯酚的去除率45.6%;随着m(TiO2)∶m(硅胶)的减小,催化剂活性先增加后降低,在m(TiO2)∶m(硅胶)为0.05/1000时催化剂活性达到最大。  相似文献   
3.
常压渣油热反应过程中胶体的稳定性   总被引:10,自引:0,他引:10  
利用质量分数电导率方法研究了中东和克拉玛依常压渣油在热反应过程中胶体的稳定性。结果表明,随着反应时间的增长,在热反应生焦诱导期内,渣油的胶体稳定性迅速下降;开始生焦后,胶体稳定性缓慢下降。从中东常压渣油的SARA四组分的数均相对分子质量、碳氢元素组成、平均芳碳率等方面探讨了中东常压渣油在热反应过程中胶体稳定性下降的原因。结果表明,在热反应中,由于裂解和缩聚反应的共同作用,使渣油的沥青质和饱和分含量上升,芳香分含量下降,胶质含量变化不大;随着热反应的进行,四组分的数均相对分子质量均呈下降趋势,导致了渣油胶体稳定性的下降并发生生焦反应。  相似文献   
4.
研究了常压渣油组分在苯溶液中的电导率。采用液相色谱法将大港、中东、塔河常压渣油各分成6个组分,测定了各组分苯溶液的电导率,并从各组分的平均相对分子质量、介电常数等数据计算了它们的平均偶极矩。采用极限质量分数电导率比较了大港、中东、塔河常压渣油各组分的导电能力和渣油体系的胶体稳定性。结果表明,各组分苯溶液的电导率随着组分质量分数的增大而增大,两者呈线性关系。3种渣油各组分的极限质量分数电导率均按以下顺序依次减小:沥青质、重胶质、中胶质、轻胶质、重芳烃、轻芳烃和饱和分;平均偶极矩也按该顺序依次下降,与极限质量分数电导率下降趋势相同,但下降幅度不同;大港常压渣油沥青质组分的平均偶极矩远小于中东和塔河常压渣油的,但极限质量分数电导率却大于它们的。3种渣油中,大港常压渣油的胶体稳定性最好。  相似文献   
5.
将取代水杨醛席夫碱分别与Co(NO3)2、Ni(NO3)2反应合成了7种席夫碱金属配合物(C1~C7),并考察了其载氧性能,对模型硫化物1-己硫醇、二丁基硫醚、2-甲基噻吩的催化氧化性能及其影响因素。结果表明:配合物的载氧性能主要受其中心离子种类、配体取代基电子效应和空间效应及共轭程度的影响;中心离子与O2的配位能力越强、配体取代基推电子能力越大且空间位阻越小、共轭链越长越有利于配合物载氧,其中每摩尔C7配合物的载氧量为0.523 mol;配合物的催化氧化性能由其载氧性能和在正辛烷中的溶解度共同决定,载氧量越高、溶解度越大,则对硫化物的催化氧化性能越好;配合物C6的催化氧化性能最佳,且对1-己硫醇和二丁基硫醚的催化氧化性能优于对2-甲基噻吩。  相似文献   
6.
针对目前乳化降黏剂在稠油油藏化学驱和压裂采油过程中存在耐温抗盐性差的问题,以双酚AF(BPAF)、对羟基苯磺酸(PHSA)和辛基酚聚氧乙烯醚(OP-10)为原料,采用两步三段法合成了一种耐温抗盐型乳化降黏剂AFOP,以耐温抗盐性、降黏性为指标,优化了降黏剂AFOP的合成条件,利用IR、GPC对AFOP的结构进行了表征,考察了在高温高盐情况下降黏剂AFOP对几种稠油的降黏效果,并与油田用降黏剂在高温高盐下的降黏效果进行了对比。研究得出AFOP最佳合成条件为BPAF、PHSA和OP-10的摩尔比为1∶4∶6,羟甲基化阶段碱性条件下在80℃下反应1.5 h,酸性条件下在80℃反应3 h,最后在100℃下缩聚反应6 h。在矿化度为8246 mg/L的模拟盐水体系中300℃下高温老化24 h后,质量分数1%的AFOP溶液与稠油间的界面张力仍能达到10-1mN/m数量级,油水比为7∶3时对渤海稠油的降黏率仍能保持在98%以上。乳化降黏剂AFOP具有优良的抗盐耐温性能,能够满足海上高温高盐油藏稠油开采的需要。图3表4参23  相似文献   
7.
为了提高馆陶、孤岛稠油的稳定性,考察了阴离子型分散剂AA(磺酸基型)、非离子型分散剂NA1(多元醇型)、油酸、月桂酸和棕榈酸对馆陶、孤岛稠油沥青质溶解度的改善效果,筛选了分别对两种沥青质稳定分散作用最好的两种分散剂NA1和AA,进一步考察了处理温度对分散剂改善效果的影响、分散剂与沥青质的相互作用方式。研究结果表明,在较低的温度下,多元醇型非离子分散剂NA1对沥青质的稳定作用显著,能够显著增大溶液中沥青质的饱和浓度;但当处理温度升高到80℃时,沥青质饱和浓度急剧下降,但仍比未添加NA1的沥青质饱和浓度高得多。而含磺酸基的离子型分散剂AA改善效果受处理温度影响较小。另外,通过红外光谱分析发现,AA的磺酸基能够与沥青质中的N—H键、O—H键之间形成红移型氢键;NA1中的羟基O—H、醚键、酯基等官能团能够与沥青质分子中的N、O、S等杂原子以及芳香共轭π键形成蓝移型氢键。两种分散剂与沥青质的相互作用方式均为与沥青质分子通过氢键而结合。图11表3参15  相似文献   
8.
利用间歇式固定床反应器对大连混合渣油进行催化加氢反应,研究氢分压和剂油比对加氢液体产物中碱性氮化物分布及类型的影响;利用电喷雾傅里叶变换离子回旋共振质谱(ESI FT-ICR MS)对原料油及产物中的碱性氮化物进行表征。结果表明:反应前后渣油中N1(含1个N原子)类的碱性化合物占绝大比例,N1S1(含1个N、1个S原子)和O1(含1个O原子)类化合物的比例次之,其它类型的相对丰度均较低;随氢分压的增大,产物中大部分碱性氮化物类别的丰度有所下降,同时发生了加氢断侧链致使N1类化合物分子的碳数减少,分子尺寸变小;随剂油质量比的增大,杂原子的相对丰度减弱,分子饱和度减小,N1类化合物的等效双键数(DBE)分布没有显著变化(DBE为9~18);但加氢反应的断链使得分子碳数明显变小为C20~C34;反应后产物中杂原子明显减少。  相似文献   
9.
姜翠玉  刘蕾  邵雪  梁书源  李明轩  张龙力 《精细化工》2019,36(10):2136-2141
以水杨醛类Schiff碱为配体,与Co(NO_3)_2、Cu(NO_3)_2反应合成6种Salen(M)型配合物Ⅰ~Ⅵ。以1-己硫醇、二丁基硫醚和2-甲基噻吩为模型化合物配制模拟油体系,考察了配合物Ⅰ~Ⅵ的催化氧化脱硫性能,并分析了配合物结构与氧化脱硫性能的关系。结果表明,6种配合物在75 min时的总脱硫效果为Ⅵ>Ⅴ>Ⅳ>Ⅰ>Ⅲ>Ⅱ,Ⅵ的总脱硫率为31.9%。对1-己硫醇及二丁基硫醚脱除效果最佳的是Ⅴ,脱除率分别为74.2%和65.1%;对2-甲基噻吩脱除效果最好的是Ⅰ,脱除率为26.8%。构效关系研究表明,中心金属离子与O_2的配位能力越强,配体的共轭体系越大、电子云密度越高,配合物的脱硫性能越好;通过IR和离子色谱对单一硫化物模拟油体系氧化前后的产物进行分析发现,硫化物氧化后皆生成相应的砜类或亚砜类,且1-己硫醇和二丁基硫醚被进一步氧化生成SO_3~(2–)或SO_4~(2–)。  相似文献   
10.
经历了一百多年的发展,石油化工已深深根植于社会,延伸到了人类生活的各个方面,与人类社会产生了密不可分的关系。放眼四周,我们的吃、穿、住、行,哪样也离不开石油化工,吃饭要用天然气和液化气;穿的衣服要用化纤做原料;居室内绝大部分的装饰材料及一些建筑材料都来源于  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号