首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2037篇
  免费   124篇
  国内免费   4篇
电工技术   50篇
综合类   3篇
化学工业   464篇
金属工艺   33篇
机械仪表   55篇
建筑科学   92篇
矿业工程   5篇
能源动力   113篇
轻工业   215篇
水利工程   20篇
石油天然气   9篇
无线电   176篇
一般工业技术   346篇
冶金工业   207篇
原子能技术   17篇
自动化技术   360篇
  2023年   15篇
  2022年   16篇
  2021年   88篇
  2020年   40篇
  2019年   37篇
  2018年   67篇
  2017年   54篇
  2016年   70篇
  2015年   48篇
  2014年   84篇
  2013年   132篇
  2012年   88篇
  2011年   136篇
  2010年   109篇
  2009年   124篇
  2008年   121篇
  2007年   114篇
  2006年   88篇
  2005年   73篇
  2004年   70篇
  2003年   61篇
  2002年   51篇
  2001年   25篇
  2000年   29篇
  1999年   29篇
  1998年   54篇
  1997年   36篇
  1996年   32篇
  1995年   21篇
  1994年   23篇
  1993年   21篇
  1992年   13篇
  1991年   9篇
  1990年   14篇
  1989年   14篇
  1988年   13篇
  1987年   9篇
  1986年   4篇
  1985年   13篇
  1984年   11篇
  1983年   10篇
  1982年   13篇
  1981年   15篇
  1980年   13篇
  1979年   11篇
  1978年   5篇
  1977年   9篇
  1976年   7篇
  1975年   3篇
  1973年   3篇
排序方式: 共有2165条查询结果,搜索用时 78 毫秒
1.
Journal of Porous Materials - The present study reports a systematic analysis of morphology and hydrogen sorption capacity of mesoporous organic-inorganic silica prepared by varying the silica...  相似文献   
2.
The generation of peptidomimetic substructures for medicinal chemistry purposes requires effective and divergent synthetic methods. We present in this work an efficient flow process that allows quick modulation of reagents for Joullié-Ugi multicomponent reaction, using spiroindolenines as core motifs. This sterically hindered imine equivalent could successfully be diversified using various isocyanides and amino acids in generally good space-time yields. A telescoped flow process combining interrupted Fischer reaction for spiroindolenine synthesis and subsequent Joullié-Ugi-type modification resulted in product formation in very good overall yield in less than 2 hours compared to 48 hours required in batch mode. The developed protocol can be seen as a general tool for rapid and facile generation of peptidomimetic compounds. We also showcase preliminary biological assessments for the prepared compounds.  相似文献   
3.
Extracellular vesicles (EVs) are a heterogeneous group of cell-derived submicron vesicles released under physiological or pathological conditions. EVs mediate the cellular crosstalk, thus contributing to defining the tumor microenvironment, including in epithelial ovarian cancer (EOC). The available literature investigating the role of EVs in EOC has been reviewed following PRISMA guidelines, focusing on the role of EVs in early disease diagnosis, metastatic spread, and the development of chemoresistance in EOC. Data were identified from searches of Medline, Current Contents, PubMed, and from references in relevant articles from 2010 to 1 April 2020. The research yielded 194 results. Of these, a total of 36 papers, 9 reviews, and 27 original types of research were retained and analyzed. The literature findings demonstrate that a panel of EV-derived circulating miRNAs may be useful for early diagnosis of EOC. Furthermore, it appears clear that EVs are involved in mediating two crucial processes for metastatic and chemoresistance development: the epithelial–mesenchymal transition, and tumor escape from the immune system response. Further studies, more focused on in vivo evidence, are urgently needed to clarify the role of EV assessment in the clinical management of EOC patients.  相似文献   
4.
Magnetotactic bacteria (MTB) naturally synthesize magnetic nanoparticles that are wrapped in lipid membranes. These membrane‐bound particles, which are known as magnetosomes, are characterized by their narrow size distribution, high colloidal stability, and homogenous magnetic properties. These characteristics of magnetosomes confer them with significant value as materials for biomedical and industrial applications. MTB are also a model system to study key biological questions relating to formation of bacterial organelles, metal homeostasis, biomineralization, and magnetoaerotaxis. The similar size scale of nano and microfluidic systems to MTB and ease of coupling to local magnetic fields make them especially useful to study and analyze MTB. In this Review, a summary of nano‐ and microtechnologies that are developed for purposes such as MTB sorting, genetic engineering, and motility assays is provided. The use of existing platforms that can be adapted for large‐scale MTB processing including microfluidic bioreactors is also described. As this is a relatively new field, future synergistic research directions coupling MTB, and nano‐ and microfluidics are also suggested. It is hoped that this Review could start to bridge scientific communities and jump‐start new ideas in MTB research that can be made possible with nano‐ and microfluidic technologies.  相似文献   
5.
Sodium and ultrafiltration profiling are method of dialysis in which dialysate sodium concentration and ultrafiltration rate are altered during the course of the dialysis session. Sodium and ultrafiltration profiling have been used, commonly simultaneously, to improve hemodynamic stability during hemodialysis. Sodium profiling is particularly effective in decreasing the incidence of intradialytic hypotension, while ultrafiltration profiling is suggested to decrease subclinical repeated end organ ischemia during dialysis. However, complications such as increased interdialytic weight gain and thirst due to sodium excess have prevented widespread use of sodium profiling. Evidence suggest that different sodium profiling techniques may lead to different clinical results, and preferring sodium balance neutral sodium profiling may mitigate adverse effects related to sodium overload. However, evidence is lacking on the long-term clinical outcomes of different sodium profiling methods. Optimal method of sodium profiling as well as the utility of sodium/ultrafiltration profiling in routine practice await further clinical investigation.  相似文献   
6.
7.
8.
9.
Mechanical vibrations seem to affect the behaviour of different cell types and the functions of different organs. Pressure waves, including acoustic waves (sounds), could affect cytoskeletal molecules via coherent changes in their spatial organization and mechano-transduction signalling. We analyzed the sounds spectra and their fractal features. Cardiac muscle HL1 cells were exposed to different sounds, were stained for cytoskeletal markers (phalloidin, beta-actin, alpha-tubulin, alpha-actinin-1), and studied with multifractal analysis (using FracLac for ImageJ). A single cell was live-imaged and its dynamic contractility changes in response to each different sound were analysed (using Musclemotion for ImageJ). Different sound stimuli seem to influence the contractility and the spatial organization of HL1 cells, resulting in a different localization and fluorescence emission of cytoskeletal proteins. Since the cellular behaviour seems to correlate with the fractal structure of the sound used, we speculate that it can influence the cells by virtue of the different sound waves’ geometric properties that we have photographed and filmed. A theoretical physical model is proposed to explain our results, based on the coherent molecular dynamics. We stress the role of the systemic view in the understanding of the biological activity.  相似文献   
10.
The synthesis of new Xenes and their potential applications prototypes have achieved significant milestones so far. However, to date the realization of Xene heterostructures in analogy with the well known van der Waals heterostructures remains an unresolved issue. Here, a Xene heterostructure concept based on the epitaxial combination of silicene and stanene on Ag(111) is introduced, and how one Xene layer enables another Xene layer of a different nature to grow on top is demonstrated. Single-phase (4 × 4) silicene is synthesized using stanene as a template, and stanene is grown on top of silicene on the other way around. In both heterostructures, in situ and ex situ probes confirm layer-by-layer growth without intercalations and intermixing. Modeling via density functional theory shows that the atomic layers in the heterostructures are strongly interacting, and hexagonal symmetry conservation in each individual layer is sequence selective. The results provide a substantial step toward currently missing Xene heterostructures and may inspire new paths for atomic-scale materials engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号