首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
电工技术   2篇
机械仪表   3篇
建筑科学   1篇
无线电   10篇
一般工业技术   7篇
自动化技术   5篇
  2022年   3篇
  2020年   6篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Intelligent Service Robotics -  相似文献   
2.
3.
Recombination via subgap trap states is considered a limiting factor in the development of organometal halide perovskite solar cells. Here, the impact of active layer crystallinity on the accumulated charge and open‐circuit voltage (Voc) in solar cells based on methylammonium lead triiodide (CH3NH3PbI3, MAPI) is demonstrated. It is shown that MAPI crystallinity can be systematically tailored by modulating the stoichiometry of the precursor mix, where small quantities of excess methylammonium iodide (MAI) improve crystallinity, increasing device Voc by ≈200 mV. Using in situ differential charging and transient photovoltage measurements, charge density and charge carrier recombination lifetime are determined under operational conditions. Increased Voc is correlated to improved active layer crystallinity and a reduction in the density of trap states in MAPI. Photoluminescence spectroscopy shows that an increase in trap state density correlates with faster carrier trapping and more nonradiative recombination pathways. Fundamental insights into the origin of Voc in perovskite photovoltaics are provided and it is demonstrated why highly crystalline perovskite films are paramount for high‐performance devices.  相似文献   
4.
Integrated perovskite/organic bulk heterojunction (BHJ) solar cells have the potential to enhance the efficiency of perovskite solar cells by a simple one‐step deposition of an organic BHJ blend photoactive layer on top of the perovskite absorber. It is found that inverted structure integrated solar cells show significantly increased short‐circuit current (Jsc) gained from the complementary absorption of the organic BHJ layer compared to the reference perovskite‐only devices. However, this increase in Jsc is not directly reflected as an increase in power conversion efficiency of the devices due to a loss of fill factor. Herein, the origin of this efficiency loss is investigated. It is found that a significant energetic barrier (≈250 meV) exists at the perovskite/organic BHJ interface. This interfacial barrier prevents efficient transport of photogenerated charge carriers (holes) from the BHJ layer to the perovskite layer, leading to charge accumulation at the perovskite/BHJ interface. Such accumulation is found to cause undesirable recombination of charge carriers, lowering surface photovoltage of the photoactive layers and device efficiency via fill factor loss. The results highlight a critical role of the interfacial energetics in such integrated cells and provide useful guidelines for photoactive materials (both perovskite and organic semiconductors) required for high‐performance devices.  相似文献   
5.
Thrust force is a very important factor for underwater vehicles. The thrust force that is determined by the pressure gradient between a propeller and a thruster can be represented by the ambient flow velocity introduced as the control volume and the axial flow velocity of a propeller. Because a change in ambient flow velocity triggers a change in the pressure gradient between a propeller and a thruster, a model taking account of the ambient flow velocity is required for an unmanned underwater vehicle (UUV) system. However, the axial flow velocity introduced into a propeller is very difficult to measure without accurate test devices. Therefore, in this study, the axial flow velocity is calculated with the computational fluid dynamics (CFD) method to use it as a basis for estimating the approximate value of the thrust force. As a result, a relatively accurate analysis of the effect of the ambient flow velocity on the thrust force can be obtained with considerable time and cost effectiveness as compared to the existing experimental methods. To evaluate the validity of the data from the CFD analysis results depending on the change in ambient flow velocity and the pressure gradient of a thruster, the resulting CFD values were compared with the thrust forces obtained in the previously performed thrust force experiment of a thruster depending on the ambient flow velocity in a circulating water channel.  相似文献   
6.
Iontronic graphene tactile sensors (i‐GTS) composed of a top floating graphene electrode and an ionic liquid droplet pinned on a bottom graphene grid, which can dramatically enhance the performance of capacitive‐type tactile sensors, are presented. When mechanical stress is applied to the top floating electrode, the i‐GTS operates in one of the following three regimes: air–air, air–electric double layer (EDL) transition, or EDL–EDL. Once the top electrode contacts the ionic liquid in the i‐GTS, the spreading behavior of the ionic liquid causes a capacitance transition (from a few pF to over hundreds of pF). This is because EDLs are formed at the interfaces between the electrodes and the ionic liquid. In this case, the pressure sensitivity increases to ≈31.1 kPa?1 with a gentle touch. Under prolonged application of pressure, the capacitance increases gradually, mainly due to the contact line expansion of the ionic liquid bridge pinned on the graphene grid. The sensors exhibit outstanding properties (response and relaxation times below 80 ms, and stability over 300 cycles) while demonstrating ultimate signal‐to‐noise ratios in the array tests. The contact‐induced spreading behavior of the ionic liquid is the key for boosting the sensor performance.  相似文献   
7.
Journal of Mechanical Science and Technology - This study analyzes the effect of changes in input parameters on the prediction results in combustion instability. First, applying the centroid...  相似文献   
8.
A new dynamic control scheme that uses the center of gravity is proposed to control the attitude of an underwater robot. Instead of using thrusters, ballast tanks are used for the static attitude control to avoid generating disturbances around the robot and to lower the power consumption. Five attitude ballast tanks are used to control the roll and pitch of the robot via the translocation of water. Using the dynamic center of gravity, the attitude can be maintained and controlled at a desired angle. The dynamics of the robot are derived using Lagrangian equations. By using the dynamic equations to find the optimal gains of the Proportional Derivative (PD) controller, this robot has been designed to have a fast attitude control capability with low power consumption. Through real experiments, it is demonstrated that the attitude control is efficient and accurate by adjusting the center of gravity. It is also verified that this system has outstanding efficiency in power consumption compared to conventional propeller systems. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   
9.

A subsurface drip irrigation system delivers water and nutrients directly to the plant root zone; other conventional nozzles-type or sprinklers-type irrigation are not used, and water-saving can reach 42–78%. In order to achieve this impact effectively, the drip irrigation requires a constant water supply under variations in pressure, which is so-called pressure compensating (PC) performance. The pressure compensating feature can be obtained by physical interaction between water flow and deformable silicone rubber in the PC dripper. In addition, pressure condition to ensure uniform water flow as a tresholding point also should be well designed, but it is generally have relied on the empiricial optimization. Here, we applied computational fluid dynamics to investigate water flow features in terms of flow rate and pressure drop of a conventional PC dripper. To understand the quantitative effects of changes in design parameters, we explored the fluid-structure interaction scheme in the CFD analysis between water flow and silicone rubber deformation. In this study, it is found that the marginal space for the silicone rubber deformation determined the threshold pressure condition; the friction condition of the tortuous channel of the dripper controlled the flow rate. This parametric study gave the logical insight to design new drip emitter with well-controlled and improved performance.

  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号