首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   12篇
  国内免费   2篇
电工技术   4篇
化学工业   77篇
金属工艺   3篇
机械仪表   8篇
建筑科学   6篇
矿业工程   11篇
能源动力   22篇
轻工业   71篇
无线电   72篇
一般工业技术   68篇
冶金工业   58篇
原子能技术   4篇
自动化技术   77篇
  2023年   5篇
  2022年   7篇
  2021年   10篇
  2020年   7篇
  2019年   13篇
  2018年   14篇
  2017年   16篇
  2016年   9篇
  2015年   5篇
  2014年   10篇
  2013年   39篇
  2012年   19篇
  2011年   16篇
  2010年   12篇
  2009年   14篇
  2008年   24篇
  2007年   14篇
  2006年   16篇
  2005年   12篇
  2004年   14篇
  2003年   12篇
  2002年   8篇
  2001年   12篇
  2000年   3篇
  1999年   7篇
  1998年   20篇
  1997年   17篇
  1996年   7篇
  1995年   7篇
  1994年   8篇
  1993年   8篇
  1992年   8篇
  1991年   8篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1983年   9篇
  1982年   3篇
  1981年   8篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   7篇
  1975年   4篇
  1973年   8篇
  1971年   3篇
排序方式: 共有481条查询结果,搜索用时 15 毫秒
1.
2.
A flower‐shaped ultra‐wideband fractal antenna is presented. It comprises a fourth iterative flower‐shaped radiator, asymmetrical stub‐loaded feeding line, and coplanar quarter elliptical ground planes. A wide operating band of 12.12 GHz (4.58‐16.7 GHz) for S 11 ≤ ? 10 dB is achieved along with an overall antenna footprint of 15.7 × 11.4 mm2. In addition, other desirable characteristics, that is, omnidirectional radiation patterns, peak gain upto 5 dB, and fidelity factor more than 75% are achieved. A good agreement exists between the simulation and measured results. The obtained results illustrate that this antenna has wide operating range and compact dimensions than available structures.  相似文献   
3.
The dependence of interfacial contact resistance (ICR) on contact materials between cathode and interconnect is systematically studied under both isothermal oxidation and thermal cycling conditions. Three kinds of cathode current-collecting layer (CCCL) are used, (La,Sr) (Co,Fe)O3 (LSCF), LSCF+10%Ag, and Ag, and tested in a SUS430/CCCL/SUS430 sandwich structure to simulate the actual operation of the solid oxide fuel cells (SOFCs). Experimental results show that the ICR of LSCF+10%Ag exhibits the smallest value, in comparison with the specimens with LSCF and Ag paste, as well as the sample without a CCCL. For LSCF+10%Ag contact, the ICR increases from 0.0069 mΩ cm2 to 3.74 mΩ cm2 under an isothermal condition for 150 h, then increases from 3.74 mΩ cm2 to 10.79 mΩ cm2 after 15 thermal cycles. This work provides information for the understanding of possible mechanisms of performance degradation of SOFCs.  相似文献   
4.
The contributions of mechanisms by which chelators influence metal translocation to plant shoot tissues are analyzed using a combination of numerical modelling and physical experiments. The model distinguishes between apoplastic and symplastic pathways of water and solute movement. It also includes the barrier effects of the endodermis and plasma membrane. Simulations are used to assess transport pathways for free and chelated metals, identifying mechanisms involved in chelate-enhanced phytoextraction. Hypothesized transport mechanisms and parameters specific to amendment treatments are estimated, with simulated results compared to experimental data. Parameter values for each amendment treatment are estimated based on literature and experimental values, and used for model calibration and simulation of amendment influences on solute transport pathways and mechanisms. Modeling indicates that chelation alters the pathways for Cu transport. For free ions, Cu transport to leaf tissue can be described using purely apoplastic or transcellular pathways. For strong chelators (ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA)), transport by the purely apoplastic pathway is insufficient to represent measured Cu transport to leaf tissue. Consistent with experimental observations, increased membrane permeability is required for simulating translocation in EDTA and DTPA treatments. Increasing the membrane permeability is key to enhancing phytoextraction efficiency.  相似文献   
5.
Sulfated zirconia is a very strong solid acid catalyst which can be utilized for various reactions. The present study focuses on synthesis of zirconia-based catalyst with high acidity and high surface area, particularly for isomerization reaction. Sulfated zirconia has been obtained by sulfation of zirconia prepared by hydrothermal route. The catalyst was developed by impregnating tungstophosphoric acid on sulfated zirconia by wet incipient method. The catalyst was characterized through Brunauer–Emmett–Teller (BET) surface area, temperature-programmed desorption of ammonia, temperature program reduction of hydrogen, Fourier transmission infrared spectroscopy, and thermogravimetric analysis. The results revealed that the catalyst is crystalline in nature with surface area 190–225?m2 g?1 and acidity 0.135–0.558?mmol?g?1. Twenty-five percent conversion was obtained (as confirmed by gas chromatography) at 225°C using n-hexane as model hydrocarbon in fixed-bed microreactor.  相似文献   
6.
A laboratory study of landfill-leachate transport in soils   总被引:12,自引:0,他引:12  
Islam J  Singhal N 《Water research》2004,38(8):2035-2042
Continuous flow experiments were conducted using sand-packed columns to investigate the relative significance of bacterial growth, metal precipitation, and anaerobic gas formation on biologically induced clogging of soils. Natural leachate from a local municipal landfill, amended with acetic acid, was fed to two sand-packed columns operated in upflow mode. Degradation of the influent acetic acid resulted in the production of methane and carbon dioxide, and simultaneous reduction of manganese, iron, and sulphate. Subsequent increase in the influent acetic acid concentration from 1750 to 2900 mg/l, and then to 5100 mg/l, led to rapid increase in the dissolved inorganic carbon, solution pH, and soil-attached biomass concentration at the column inlet, which promoted the precipitation of Mn(2+) and Ca(2+) as carbonate, and Fe(2+) as sulphide. An influent acetic acid concentration of 1750 mg/l decreased the soil's hydraulic conductivity from an initial value of 8.8 x 10(-3)cm/s to approximately 7 x 10(-5)cm/s in the 2-6 cm section of the column. Increasing the influent acetic acid to 5100 mg/l only further decreased the hydraulic conductivity to 3.6 x 10(-5)cm/s; rather, the primary effect was to increase the length of the zone experiencing reduced hydraulic conductivity from 0-6 cm to the entire column. As bioaccumulation was limited to the 0-5 cm section of the column, and the effect of metal precipitation was negligible, the reduction on the deeper sections of the column is attributed to gas flow, which was up to 1440 ml/day. Mathematical modelling shows that biomass accumulation and gas formation were equally significant in reducing the hydraulic conductivity, while metal precipitation contributed only up to 4% of the observed reduction.  相似文献   
7.
This study investigated the biodegradability of the herbicides isoproturon and 2,4-dichlorophenoxyacetic acid (2,4-D) in sequencing batch reactors (SBRs). Two laboratory-scale (2L liquid volume) SBRs were employed: one reactor performing under aerobic and the other under anaerobic conditions. The aerobic SBR was operated at an ambient temperature (22+/-2 degrees C), while the anaerobic SBR was run in the lower mesophilic range (30+/-2 degrees C). Each bioreactor was seeded with a 3:1 mixture (by weight) of fresh sludge and biomass that had been previously exposed to both herbicides. The effect of herbicide concentration on either treatment process was explored at a hydraulic retention time (HRT) of 48 h, using glucose as a supplemental carbon substrate. Although no isoproturon degradation was observed in either system during the study, complete 2,4-D removal occurred after an acclimation period of approximately 30 d (aerobic SBR) and 70 d (anaerobic SBR). The aerobic reactor achieved complete 2,4-D utilization at feed concentrations up to 500 mg/L. A further increase to 700 mg/L, however, proved to be inhibitory since 2,4-D biodegradation was negligible. On the other hand, the anaerobic SBR was able to degrade 120 mg/L of 2,4-D, which corresponds to 40% of the maximum feed concentration applied. Moreover, glucose was consumed first throughout the experiment in a sequential utilization pattern relating to 2,4-D, with biodegradation of both substrates following closely first-order kinetics.  相似文献   
8.
Control of structural vibrations has significant applications in manufacturing, infrastructure engineering, aerospace engineering and various consumer products. In last two decades, considerable attention has been focused to suppress structural vibrations using active vibration control technique. Various researchers have proposed various optimization criteria for optimal placement of piezoelectric patches over a smart structure to suppress vibrations using various optimization techniques. This paper presents a review of various optimization criteria and techniques that have been used by various researchers in the field of smart structures. Mathematical expressions of objective functions of twelve optimization criteria have been presented and their justifications have been reasoned. Step by step procedures of commonly used optimization techniques have also been presented.  相似文献   
9.
A 0.5(Ba0.7Ca0.3)TiO3–0.5Ba(Zr0.1Ti0.9)O3 (BCT-BZT) ceramic was studied for photocatalysis and piezocatalysis effects using dye degradation (methylene blue, rhodamine B, and methyl orange) and bacterial (Escherichia coli) disinfection from aqueous solution. To examine the effect of ferroelectric polarization, BCT-BZT powder was poled using the corona poling technique. Same time, BCT-BZT was converted into Ag/BCT-BZT composites as Ag induced surface plasmon resonance effect during photocatalysis. Piezocatalysis performance was assessed for dyes mineralization under ultrasonication. There was a significant impact of silver nanoparticles on the photo/piezocatalysis performance of BCT-BZT. Similarly, electric poling has also played a positive role in improving the photo/piezocatalysis in view of various dye degradation. These samples also showed effective antibacterial performance.  相似文献   
10.

This article explores that the study on bending of magneto-electric-elastic nanobeams relies on nonlocal elasticity theory. The Vlasov’s model foundation utilizes the silica aerogel foundation. The guiding expressions of nonlocal nanobeams in the considered framework are used extensively and where parabolic third-order beam theory is achieved after using Hamilton’s principle. Parametric work is introduced to scrutinize the influence of the magneto-electro-mechanical loadings, nonlocal parameter, and aspect ratio on the deflection characteristics of nanobeams. It is noticed that the boundary conditions, nonlocal parameter, and beam geometrical parameters have significant effects on dimensionless deflection of nanoscale beams.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号