首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
综合类   1篇
金属工艺   2篇
无线电   2篇
一般工业技术   2篇
自动化技术   10篇
  2019年   3篇
  2010年   3篇
  2009年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  1998年   1篇
  1995年   2篇
排序方式: 共有17条查询结果,搜索用时 208 毫秒
1.
In this paper, a new computation method and an optimization algorithm are presented for feedrate scheduling of five-axis machining in compliance with both machine drive limits and process limits. Five-axis machine tool with its ability of controlling tool orientation to follow the sculptured surface contour has been widely used in modern manufacturing industry. Feedrate scheduling serving as a kernel of CNC control system plays a critical role to ensure the required machining accuracy and reliability for five-axis machining. Due to the nonlinear coupling effects of all involved drive axes and the saturation limit of servo motors, the feedrate scheduling for multi-axis machining has long been recognized and remains as a critical challenge for achieving five-axis machine tools' full capacity and advantage. To solve the nonlinearity nature of the five-axis feedrate scheduling problems, a relaxation mathematical process is presented for relaxing both the drive motors' physical limitations and the kinematic constraints of five-axis tool motions. Based on the primary optimization variable of feedrate, the presented method analytically linearizes the machining-related constraints, in terms of the machines' axis velocities, axis accelerations and axis jerks. The nonlinear multi-constrained feedrate scheduling problem is transformed into a manageable linear programming problem. An optimization algorithm is presented to find the optimal feedrate scheduling solution for the five-axis machining problems. Both computer implementation and laboratorial experiment testing by actual machine cutting were conducted and presented in this paper. The experiment results demonstrate that the proposed method can effectively generate efficient feedrate scheduling for five-axis machining with constraints of the machine tool physical constraints and limits. Compared with other existing numerical methods, the proposed method is able to find an accurate analytical solution for the nonlinear constrained five-axis feedrate scheduling problems without compromising the efficiency of the machining processes.  相似文献   
2.
Piezoelectric inkjet printing is a noncontact process that enables microscale processing of biological materials. In this research summary, the use of piezoelectric inkjet printing for patterning medical adhesives and sealants, including a two-component polyethylene glycol hydrogel-based medical sealant, an N-butyl cyanoacrylate tissue adhesive, and a mussel adhesive protein biological adhesive, is described The effect of Fe(III) on mussel adhesive protein structure was evaluated by means of atomic force microscopy. The ability to process microscale patterns of medical sealants and adhesives will provide an improvement in tissue joining, including enhanced tissue integrity, reduced bond lines, and decreased adhesive toxicity. Piezoelectric inkjet deposition of medical adhesives and sealants may be used in wound closure, fracture fixation, and microscale vascular surgery.  相似文献   
3.
In this paper, a new Material-Side-Tracing method and a pencil-cut curve refinement technique are proposed for 3-axis pencil-cut path generation. Pencil-cut machining has been used to remove remaining material at highly curved regions or corners after the finishing process. Procedures of evaluating and extracting valid pencil-cut points are developed by taking practical cases into account. With the strategy of using material-side information in the tracing process, smooth and clean pencil-cut curves can be generated even if the actual adjacent pencil-cut curves are very close. A technique of pencil-cut curve refinement is presented to overcome the limitation due to the discrete CL-net intervals, and the smooth pencil-cut paths are made complete at sharp corners. Computer implementation and practical examples are also presented in this paper. The proposed techniques can be used in the CAD/CAM systems to generate pencil-cut paths for machining complex polyhedral models.  相似文献   
4.
A new method to realize stable and realistic cutting simulation using an impedance display haptic device and microcomputer is presented in this paper. Material removal or cutting simulation is a critical task in dental preparation surgery simulation. In this paper, a piecewise contact force model is proposed to approximately describe the cutting process. Challenging issues of minimizing the difference between the cutting simulation and haptic contact simulation are analyzed. The proposed contact-based simulation method is developed for a one-dimensional cutting task and can be expanded to three-dimensional cases. Local model-based multirate simulation cutting architecture is proposed and force control of the haptic device is decoupled from the cutting simulation loop, which can both ensure high fidelity of dynamical simulation as well as maintain stability of the haptic device. The cutting operation is realized using spherical and cylindrical shaped tools. An experiment based on the Phantom desktop proves that fidelity in one-dimensional cutting can be realized and stability in three-dimensional cutting can be ensured using the force-filtering method.  相似文献   
5.
In this paper, a collaborative product development and prototyping framework is proposed by using distributed haptic interfaces along with deformable objects modeling. Collaborative Virtual Environment (CVE) is a promising technique for industrial product development and virtual prototyping. Network control problems such as network traffic and network delay in communication have greatly limited collaborative virtual environment applications. The problems become more difficult when high-update-rate haptic interfaces and computation intensive deformable objects modeling are integrated into CVEs for intuitive manipulation and enhanced realism. A hybrid network architecture is proposed to balance the computational burden of haptic rendering and deformable object simulation. Adaptive artificial time compensation is used to reduce the time discrepancy between the server and the client. Interpolation and extrapolation approaches are used to synchronize graphic and haptic data transmitted over the network. The proposed techniques can be used for collaborative product development, virtual assembly, remote product simulation and other collaborative virtual environments where both haptic interfaces and deformable object models are involved.  相似文献   
6.
Laser micromachining is becoming a common method for fabrication of microstructured medical devices. Developments in pulsed laser technology have made it possible to achieve precision machining of sub-micrometer features with minimal damage to the surrounding material. Several aspects of laser micromachining, including machining methods, types of lasers used in micromachining, and laser-material interaction, are discussed in this article. Biomedical applications of laser micromachining are also reviewed. The ablation behavior of silicon was examined as a function of laser energy, aperture, and repetition rate. In vitro studies showed that microscale grooves on silicon substrates may be used to orient human aortic vascular smooth muscle cells. We anticipate that the use of laser micromachining for modifying medical and dental devices will become more significant over the coming years.  相似文献   
7.
In many scientific applications, arrays containing data are indirectly indexed through indirection arrays. Such scientific applications are called irregular programs and are a distinct class of applications that require special techniques for parallelization. This paper presents a library called CHAOS, which helps users implement irregular programs on distributed-memory message-passing machines, such as the Paragon, Delta, CM-5 and SP-1. The CHAOS library provides efficient runtime primitives for distributing data and computation over processors; it supports efficient index translation mechanisms and provides users high-level mechanisms for optimizing communication. CHAOS subsumes the previous PARTI library and supports a larger class of applications. In particular, it provides efficient support for parallelization of adaptive irregular programs where indirection arrays are modified during the course of computation. To demonstrate the efficacy of CHAOS, two challenging real-life adaptive applications were parallelized using CHAOS primitives: a molecular dynamics code, CHARMM, and a particle-in-cell code, DSMC. Besides providing runtime support to users, CHAOS can also be used by compilers to automatically parallelize irregular applications. This paper demonstrates how CHAOS can be effectively used in such a framework. By embedding CHAOS primitives in the Syracuse Fortran 90D/HPF compiler, kernels taken from the CHARMM and DSMC codes have been automatically parallelized.  相似文献   
8.
Detection of loops and singularities of surface intersections   总被引:3,自引:0,他引:3  
Two surface patches intersecting each other generally at a set of points (singularities), form open curves or closed loops. While open curves are easily located by following the boundary curves of the two patches, closed loops and singularities pose a robustness challenge since such points or loops can easily be missed by any subdivision or marching-based intersection algorithms, especially when the intersecting patches are flat and ill-positioned. This paper presents a topological method to detect the existence of closed loops or singularities when two flat surface patches intersect each other. The algorithm is based on an oriented distance function defined between two intersecting surfaces. The distance function is evaluated in a vector field to identify the existence of singular points of the distance function since these singular points indicate possible existence of closed intersection loops. The algorithm detects the existence rather than the absence of closed loops and singularities. This algorithm requires general C2 parametric surfaces.  相似文献   
9.
This paper presents a Visibility Sphere Marching algorithm of constructing polyhedral models from Dexel volume models for haptic virtual sculpting. Dexel volume models are used as the in-process models representation during interactive modification in a haptic virtual sculpting system. The stock material represented in a Dexel volume model is sculpted into a designed model using a developed haptic sculpting system. The sculpted Dexel volume models are converted to polyhedral surface models in STL format by the proposed visibility sphere marching algorithm. The conversion turns out to be an interesting and challenging problem. The proposed visibility sphere marching algorithm consists of three sub-algorithms: (i) roof and floor covering, (ii) wall-building, and (iii) hole-filling algorithms. The polyhedral surface models converted from the Dexel volume models can then be input to and processed by available computer-aided manufacturing (CAM) or rapid prototyping systems. The presented technique can be used in virtual sculpting, CAD/CAM, numerically controlled machining verification and rapid prototyping.  相似文献   
10.
This paper presents a new method of using the tri-dexel volumetric models and a haptics force feedback for virtual prototyping and manufacturing planning. In the proposed method, the initial polyhedral surface model is converted to a tri-dexel volumetric model by using a depth-peeling dexelization algorithm. In the virtual prototyping process, the tri-dexel volumetric model is updated by the swept volume of a moving cutter via a haptic force feedback interface device. A collision detection algorithm is proposed for the virtual sculpting and the pencil-cut planning with real-time haptic force feedback to the users. Tool paths are generated for machining the virtual sculpted parts via the simulation and verification on a virtual CNC machine tool before they are actually machined. Computer implementation and practical examples are also presented in this paper. The proposed method enables the haptic-aided virtual prototyping and manufacturing planning of complex surface parts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号